metalsvm/arch/x86/mm/page.c
stefan 45219bce2e - huge commit
- enable the paging support
- redesign of the APIC code

TODO:
- Currently, we are not able to start user-level applications.
- The RTL8139 driver does not longer work. Perhaps, a bug in the output function.
- The APIC codes doesn't work on all systems. Therefore, the code is currently disabled.



git-svn-id: http://svn.lfbs.rwth-aachen.de/svn/scc/trunk/MetalSVM@326 315a16e6-25f9-4109-90ae-ca3045a26c18
2010-12-10 06:16:58 +00:00

394 lines
11 KiB
C

/*
* Copyright 2010 Stefan Lankes, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of MetalSVM.
*/
#include <metalsvm/stddef.h>
#include <metalsvm/stdio.h>
#include <metalsvm/stdlib.h>
#include <metalsvm/mmu.h>
#include <metalsvm/string.h>
#include <metalsvm/page.h>
#include <metalsvm/spinlock.h>
#include <metalsvm/processor.h>
#include <metalsvm/tasks.h>
#include <metalsvm/errno.h>
#include <asm/irq.h>
#include <asm/multiboot.h>
/*
* Virtual Memory Layout of the standard configuration
* (1 GB kernel space)
*
* 0x00000000 - 0x000FFFFF: reserved for IO devices
* 0x00100000 - 0x0DEADFFF: Kernel (size depends on the configuration)
* 0xDEAE0000 - 0x3FFFEFFF: Kernel heap
* 0x3FFFF000 - 0x3FFFFFFF: Page Table are mapped in this region
* (The first 256 entries belongs to kernel space)
*/
/*
* Note that linker symbols are not variables, they have no memory allocated for
* maintaining a value, rather their address is their value.
*/
extern const void kernel_start;
extern const void kernel_end;
// boot task's page directory and page directory lock
static page_dir_t boot_pgd = {{[0 ... 1023] = 0}};
static spinlock_t boot_pgd_lock = SPINLOCK_INIT;
static int paging_enabled = 0;
int get_kernel_pgd(task_t* task)
{
if (BUILTIN_EXPECT(!task, 0))
return -EINVAL;
task->pgd = &boot_pgd;
task->pgd_lock = &boot_pgd_lock;
return 0;
}
size_t virt_to_phys(task_t* task, size_t viraddr)
{
uint32_t index1, index2;
page_table_t* pgt;
size_t ret = 0;
if (BUILTIN_EXPECT(!task || !task->pgd || !paging_enabled, 0))
return 0;
index1 = viraddr >> 22;
index2 = (viraddr >> 12) & 0x3FF;
if (!(task->pgd->entries[index1] & 0xFFFFF000))
goto out;
pgt = (page_table_t*) ((KERNEL_SPACE - 1024*PAGE_SIZE + index1*4) & 0xFFFFF000);
if (!pgt || !(pgt->entries[index2]))
goto out;
ret = pgt->entries[index2] & 0xFFFFF000; // determine page frame
ret = ret | (viraddr & 0xFFF); // add page offset
out:
//kprintf("vir %p to phy %p\n", viraddr, ret);
return ret;
}
size_t map_region(task_t* task, size_t viraddr, size_t phyaddr, uint32_t npages, uint32_t flags)
{
page_table_t* pgt;
size_t index, i;
size_t ret;
if (BUILTIN_EXPECT(!task || !task->pgd || !phyaddr, 0))
return 0;
if (BUILTIN_EXPECT(!paging_enabled && (viraddr != phyaddr), 0))
return 0;
if (!(flags & MAP_KERNEL_SPACE))
return 0;
if (!viraddr) {
viraddr = vm_alloc(task, npages, flags);
if (BUILTIN_EXPECT(!viraddr, 0)) {
kputs("map_adress: found no valid virtual address\n");
return 0;
}
}
ret = viraddr;
//kprintf("map %d pages from %p to %p\n", npages, phyaddr, ret);
for(i=0; i<npages; i++, viraddr+=PAGE_SIZE, phyaddr+=PAGE_SIZE) {
index = viraddr >> 22;
if (!(task->pgd->entries[index])) {
page_table_t* pgt_container;
pgt = (page_table_t*) get_pages(1);
if (BUILTIN_EXPECT(!pgt, 0)) {
spinlock_unlock(task->pgd_lock);
kputs("map_address: out of memory\n");
return 0;
}
// set the new page table into the directory
task->pgd->entries[index] = (uint32_t)pgt|KERN_TABLE;
// if paging is already enabled, we need to use the virtual address
if (paging_enabled)
// we already know the virtual address of the "page table container"
// (see file header)
pgt_container = (page_table_t*) ((KERNEL_SPACE - PAGE_SIZE) & 0xFFFFF000);
else
pgt_container = (page_table_t*) (task->pgd->entries[(KERNEL_SPACE - PAGE_SIZE) >> 22] & 0xFFFFF000);
if (BUILTIN_EXPECT(!pgt_container, 0)) {
spinlock_unlock(task->pgd_lock);
kputs("map_address: internal error\n");
return 0;
}
// map the new table into the address space of the kernel space
pgt_container->entries[index] = ((size_t) pgt)|KERN_PAGE;
// clear the page table
if (paging_enabled)
memset((void*) (KERNEL_SPACE - 1024*PAGE_SIZE + index*4), 0, PAGE_SIZE);
else
memset(pgt, 0, PAGE_SIZE);
} else pgt = (page_table_t*) (task->pgd->entries[index] & 0xFFFFF000);
/* convert physical address to virtual */
if (paging_enabled)
pgt = (page_table_t*) ((KERNEL_SPACE - 1024*PAGE_SIZE + index*4) & 0xFFFFF000);
index = (viraddr >> 12) & 0x3FF;
if (BUILTIN_EXPECT(pgt->entries[index], 0)) {
spinlock_unlock(task->pgd_lock);
kprintf("0x%x is already maped\n");
return 0;
}
pgt->entries[index] = KERN_PAGE|(phyaddr & 0xFFFFF000);
if (flags & MAP_NO_CACHE)
pgt->entries[index] |= PG_PCD;
tlb_flush_one_page(viraddr);
}
return ret;
}
/*
* Use the first fit algorithm to find a valid address range
*
* TODO: O(n) => bad performance, we need a better approach
*/
size_t vm_alloc(task_t* task, uint32_t npages, uint32_t flags)
{
uint32_t index1, index2, j;
size_t viraddr, i;
size_t start, end;
page_table_t* pgt;
if (BUILTIN_EXPECT(!task || !task->pgd || !paging_enabled, 0))
return 0;
if (flags & MAP_KERNEL_SPACE) {
start = (((size_t) &kernel_end) + PAGE_SIZE) & 0xFFFFF000;
end = (KERNEL_SPACE - 2*PAGE_SIZE) & 0xFFFFF000; // we need 1 PAGE for our PGTs
} else {
start = KERNEL_SPACE & 0xFFFFF000;
end = 0xFFFFF000;
}
if (BUILTIN_EXPECT(!npages, 0))
return 0;
viraddr = i = start;
j = 0;
do {
index1 = i >> 22;
index2 = (i >> 12) & 0x3FF;
pgt = (page_table_t*) ((KERNEL_SPACE - 1024*PAGE_SIZE + index1*4) & 0xFFFFF000);
if (!pgt || !(pgt->entries[index2])) {
i+=PAGE_SIZE;
j++;
} else {
// restart search
j = 0;
viraddr = i + PAGE_SIZE;
i = i + PAGE_SIZE;
}
} while((j < npages) && (i<=end));
if ((j >= npages) && (viraddr < end))
return viraddr;
return 0;
}
int vm_free(task_t* task, size_t viraddr, uint32_t npages)
{
uint32_t i;
uint32_t index1, index2;
page_table_t* pgt;
if (BUILTIN_EXPECT(!task || !task->pgd || !paging_enabled, 0))
return -EINVAL;
for(i=0; i<npages; i++, viraddr+=PAGE_SIZE)
{
index1 = viraddr >> 22;
index2 = (viraddr >> 12) & 0x3FF;
pgt = (page_table_t*) ((KERNEL_SPACE - 1024*PAGE_SIZE + index1*4) & 0xFFFFF000);
if (!pgt)
continue;
pgt->entries[index2] = 0;
}
return 0;
}
int print_paging_tree(size_t viraddr)
{
uint32_t index1, index2;
page_dir_t* pgd = NULL;
page_table_t* pgt = NULL;
if (BUILTIN_EXPECT(!viraddr, 0))
return -EINVAL;
index1 = viraddr >> 22;
index2 = (viraddr >> 12) & 0x3FF;
kprintf("Paging dump of address 0x%x\n", viraddr);
pgd = per_core(current_task)->pgd;
kprintf("\tPage directory entry %u: ", index1);
if (pgd) {
kprintf("0x%0x\n", pgd->entries[index1]);
pgt = (page_table_t*) (pgd->entries[index1] & 0xFFFFF000);
} else
kputs("invalid page directory\n");
/* convert physical address to virtual */
if (paging_enabled && pgt)
pgt = (page_table_t*) (KERNEL_SPACE - 1024*PAGE_SIZE + index1*4);
kprintf("\tPage table entry %u: ", index2);
if (pgt)
kprintf("0x%x\n", pgt->entries[index2]);
else
kputs("invalid page table\n");
return 0;
}
static void pagefault_handler(struct state *s)
{
kprintf("PAGE FAULT: Task %u got page fault at irq %u\n", per_core(current_task)->id, s->int_no);
kprintf("Register state: eax = 0x%x, ebx = 0x%x, ecx = 0x%x, edx = 0x%x, edi = 0x%x, esi = 0x%x, ebp = 0x%x, esp = 0x%x\n",
s->eax, s->ebx, s->ecx, s->edx, s->edi, s->esi, s->ebp, s->esp);
abort();
}
int arch_paging_init(void)
{
uint32_t i, npages, index1, index2;
page_table_t* pgt;
size_t viraddr;
// uninstall default handler and install our own
irq_uninstall_handler(14);
irq_install_handler(14, pagefault_handler);
// Create a page table to reference to the other page tables
pgt = (page_table_t*) get_pages(1);
if (!pgt) {
kputs("arch_paging_init: Not enough memory!\n");
return -ENOMEM;
}
memset(pgt, 0, PAGE_SIZE);
// map this table at the end of the kernel space
viraddr = KERNEL_SPACE - PAGE_SIZE;
index1 = viraddr >> 22;
index2 = (viraddr >> 12) & 0x3FF;
// now, we create a self reference
per_core(current_task)->pgd->entries[index1] = (((size_t) pgt) & 0xFFFFF000)|USER_TABLE;
pgt->entries[index2] = ((size_t) pgt & 0xFFFFF000)|KERN_PAGE;
/*
* Set the page table and page directory entries for the kernel. We map the kernel's physical address
* to the same virtual address.
*/
npages = ((size_t) &kernel_end - (size_t) &kernel_start) / PAGE_SIZE;
if ((size_t)&kernel_end % PAGE_SIZE)
npages++;
map_region(per_core(current_task), (size_t)&kernel_start, (size_t)&kernel_start, npages, MAP_KERNEL_SPACE);
#ifdef CONFIG_VGA
// map the video memory into the kernel space
map_region(per_core(current_task), VIDEO_MEM_ADDR, VIDEO_MEM_ADDR, 1, MAP_KERNEL_SPACE|MAP_NO_CACHE);
#endif
#ifdef CONFIG_MULTIBOOT
/*
* of course, mb_info has to map into the kernel space
*/
if (mb_info)
map_region(per_core(current_task), (size_t) mb_info, (size_t) mb_info, 1, MAP_KERNEL_SPACE);
/*
* Map reserved memory regions into the kernel space
*/
if (mb_info && (mb_info->flags & (1 << 6))) {
multiboot_memory_map_t* mmap = (multiboot_memory_map_t*) mb_info->mmap_addr;
multiboot_memory_map_t* mmap_end = (void*) ((size_t) mb_info->mmap_addr + mb_info->mmap_length);
while (mmap < mmap_end) {
if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE) {
npages = mmap->len / PAGE_SIZE;
if ((mmap->addr+mmap->len) % PAGE_SIZE)
npages++;
map_region(per_core(current_task), mmap->addr, mmap->addr, npages, MAP_KERNEL_SPACE|MAP_NO_CACHE);
}
mmap++;
}
}
/*
* Modules like the init ram disk are already loaded.
* Therefore, we map these moduels into the kernel space.
*/
if (mb_info && (mb_info->flags & (1 << 3))) {
multiboot_module_t* mmodule = (multiboot_module_t*) mb_info->mods_addr;
for(i=0; i<mb_info->mods_count; i++, mmodule++) {
// map physical address to the same virtual address
npages = (mmodule->mod_end - mmodule->mod_start) / PAGE_SIZE;
if (mmodule->mod_end % PAGE_SIZE)
npages++;
map_region(per_core(current_task), (size_t) (mmodule->mod_start), (size_t) (mmodule->mod_start), npages, MAP_KERNEL_SPACE);
}
}
#endif
/* enable paging */
write_cr3((uint32_t) &boot_pgd);
i = read_cr0();
i = i | (1 << 31);
write_cr0(i);
paging_enabled = 1;
/*
* we turned on paging
* => now, we are able to register our task for Task State Switching
*/
register_task(per_core(current_task));
return 0;
}