metalsvm/arch/x86/scc/icc.c

539 lines
12 KiB
C

/*
* Copyright 2010 Stefan Lankes, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR COND */
#include <metalsvm/stdio.h>
#include <metalsvm/errno.h>
#include <metalsvm/processor.h>
#include <metalsvm/errno.h>
#include <asm/io.h>
#include <asm/irqflags.h>
#include <asm/irq.h>
#ifdef CONFIG_ROCKCREEK
#include <asm/RCCE.h>
#include <asm/RCCE_lib.h>
#include <asm/iRCCE.h>
#include <asm/SCC_API.h>
#include <asm/icc.h>
#include <asm/svm.h>
#define IRQ_STATUS 0xD000
#define IRQ_MASK 0xD200
#define IRQ_RESET 0xD400
#define IRQ_REQUEST 0xD600
#define IRQ_CONFIG 0xD800
#include <net/mmnif.h>
bootinfo_t* bootinfo = (bootinfo_t*) SCC_BOOTINFO;
static int num_ues, my_ue;
/* PSE bit for Pentium+ equals MPE (message buffer enable) flag in RCK! So, use it to create _PAGE_MPB symbol... */
#define _CR4_MPE 0x00000800
/* maximal number of SCC's cores */
#define MAX_SCC_CORES (NUM_ROWS*NUM_COLS*NUM_CORES)
/*
* This is the modified MPB program, which is part of the RCCE distribution (src/mpb.c).
*
* This function clears the local MPB and resets the test&set register.
*/
static int scc_clear(void)
{
int tmp, x, y, z, offset;
// Initialize API
InitAPI(0);
// Find out who I am...
tmp=ReadConfigReg(CRB_OWN+MYTILEID);
x=(tmp>>3) & 0x0f; // bits 06:03
y=(tmp>>7) & 0x0f; // bits 10:07
z=(tmp ) & 0x07; // bits 02:00
// Allocate Message Passing Buffer
t_vcharp MPB;
MPBalloc(&MPB, x, y, z, 1);
if (!MPB) {
kprintf("Unable to allocate MPB for core %d of Tile x=%d, y= %d! Exiting.\n", z, x, y);
return 255;
}
// zap own MPB
for (offset=0; offset < 0x2000; offset+=8)
*(volatile unsigned long long int*)(MPB+offset) = 0;
// Clear test&set register write. Next read-access will read "1" (lock granted).
SetConfigReg(CRB_ADDR(x,y)+((z)?LOCK1:LOCK0), 1);
// frees Message Passing Buffer
MPBunalloc(&MPB);
return 0;
}
static void intr_handler(struct state *s)
{
// reset appropriate bit in the core configuration register
int tmp, z;
#ifdef CONFIG_LWIP
//mmnif_irqhandler();
#endif
z = Z_PID(RC_COREID[my_ue]);
tmp=ReadConfigReg(CRB_OWN + (z==0 ? GLCFG0 : GLCFG1));
tmp &= ~2;
SetConfigReg(CRB_OWN + (z==0 ? GLCFG0 : GLCFG1), tmp);
}
int icc_init(void)
{
int i, z, tmp;
uint64_t start, end, ticks, freq = 533;
uint32_t cr4;
kputs("Initialize Rock Creek!\n");
/* Enable Messagepassing in CR4 */
cr4 = read_cr4();
cr4 = cr4 | _CR4_MPE;
write_cr4(cr4);
kprintf("address of the initrd: 0x%x\n", bootinfo->addr);
kprintf("size of the initrd: %d\n", bootinfo->size);
kprintf("rcce argc = %d\n", bootinfo->argc);
for(i=0; i<bootinfo->argc; i++)
kprintf("rcce argv[%d] = %s\n", i, bootinfo->argv[i]);
if (bootinfo->argc >= 3)
freq = atoi(bootinfo->argv[2]);
kputs("Reset SCC!\n");
scc_clear();
kputs("Wait some time...\n");
mb();
start = rdtsc();
do {
mb();
end = rdtsc();
ticks = end > start ? end - start : start - end;
} while(ticks*TIMER_FREQ < 300ULL*freq*1000000ULL);
if (RCCE_init(&bootinfo->argc, &bootinfo->argv) != RCCE_SUCCESS)
return -ENODEV;
if (iRCCE_init() != iRCCE_SUCCESS)
return -ENODEV;
// enable additional outputs
//RCCE_debug_set(RCCE_DEBUG_ALL);
my_ue = RCCE_ue();
num_ues = RCCE_num_ues();
kprintf("Got rank %d of %d ranks\n", my_ue, num_ues);
RCCE_barrier(&RCCE_COMM_WORLD);
#if 0
kputs("RCCE test...\t");
if (my_ue == 0)
msg = 0x4711;
if (RCCE_bcast((char*) &msg, sizeof(msg), 0, RCCE_COMM_WORLD) == RCCE_SUCCESS)
kprintf("successfull! (0x%x)\n", msg);
else
kprintf("failed! (0x%x)\n", msg);
#endif
#if 0
char* str = RCCE_shmalloc(128);
if (my_ue == 1) {
memset(str, 0x00, 128);
strcpy(str, "Hello RCCE_shmalloc\n");
}
RCCE_barrier(&RCCE_COMM_WORLD);
kprintf("RCCE_shmalloc test: %s\n", str);
RCCE_shfree(str);
#endif
// reset INTR/LINT0 flag
z = Z_PID(RC_COREID[my_ue]);
tmp=ReadConfigReg(CRB_OWN + (z==0 ? GLCFG0 : GLCFG1));
tmp &= ~(1 << GLCFG_XINTR_BIT);
SetConfigReg(CRB_OWN + (z==0 ? GLCFG0 : GLCFG1), tmp);
#if 0
// disable L2 cache
z = Z_PID(RC_COREID[my_ue]);
tmp=ReadConfigReg(CRB_OWN + (z==0 ? L2CFG0 : L2CFG1));
tmp |= (1 << L2CFG_WAYDISABLE_BIT);
SetConfigReg(CRB_OWN + (z==0 ? L2CFG0 : L2CFG1), tmp);
kprintf("set L2CFG to 0x%x\n", (uint32_t) tmp);
#endif
tmp=ReadConfigReg(CRB_OWN + (z==0 ? L2CFG0 : L2CFG1));
kputs("In the config registers is the L2 cache ");
if (tmp & (1 << L2CFG_WAYDISABLE_BIT))
kputs("disabled!\n");
else
kputs("enabled!\n");
kputs("In CR0 is caching ");
if (read_cr0() & (1 << 30))
kputs("disabled!\n");
else
kputs("enabled!\n");
kputs("In CR0 is writethrough caching ");
if (read_cr0() & (1 << 29))
kputs("enabled!\n");
else
kputs("disabled!\n");
// set interrupt handler (INTR/LINT0)
irq_install_handler(124, intr_handler);
// unmask interrupts
volatile uint64_t* irq_mask = (volatile uint64_t*)(FPGA_BASE + IRQ_MASK + my_ue*8);
*irq_mask &= 0;
// reset interrupt reg
volatile uint64_t* irq_reset = (volatile uint64_t*)(FPGA_BASE + IRQ_RESET + my_ue*8);
*irq_reset = ~(0);
// set remote interrupts to LINT 0
volatile int* irq_config = (volatile int*)(FPGA_BASE + IRQ_CONFIG + my_ue*4);
*irq_config = 0;
volatile int* irq_status = (volatile int*)(FPGA_BASE + IRQ_STATUS + my_ue*8);
kprintf( "irq_mask = %x\n", *irq_mask );
kprintf( "irq_config = %x\n", *irq_config );
kprintf( "status_reg = %x\n", *irq_status );
kputs("Now, the SCC is initialized!\n");
return 0;
}
int icc_send_irq(int ue)
{
int tmp, x, y, z, addr;
z = Z_PID(RC_COREID[ue]);
x = X_PID(RC_COREID[ue]);
y = Y_PID(RC_COREID[ue]);
addr = CRB_ADDR(x,y) + (z==0 ? GLCFG0 : GLCFG1);
// send interrupt to ue
do {
NOP1;
tmp=ReadConfigReg(addr);
} while(tmp & 2);
tmp |= 2;
SetConfigReg(addr, tmp);
return 0;
}
int icc_halt(void)
{
icc_mail_check(0);
NOP1;
//HALT;
return 0;
}
#define ROUNDS 1000
#define CORE_A 0 // sender
#define CORE_B 1 // receiver
int icc_send_gic_irq(int core_num) {
volatile uint64_t* irq_request = (volatile uint64_t*)(FPGA_BASE+IRQ_REQUEST+my_ue*8);
uint64_t bit_pos;
// determine bit position and set according bit
bit_pos = (1 << core_num);
*irq_request = bit_pos;
return 0;
}
int icc_irq_ping(void)
{
if( my_ue == 2 ) return -1 ;
icc_send_gic_irq(2);
kprintf( "my_ue = %d\n", my_ue );
kprintf( "sending irq to 1!\n");
return 0;
}
static inline void icc_mail_check_tag(iRCCE_MAIL_HEADER* mail) {
char* recv_buffer;
if( !mail ) return;
switch( mail->tag ) {
case iRCCE_ANYLENGTH:
recv_buffer = (char*)kmalloc( mail->size );
iRCCE_irecv(recv_buffer, mail->size,
mail->source, NULL );
break;
case PING_REQ:
iRCCE_mail_send(0, PING_RESP, 0, NULL, mail->source);
break;
case SVM_REQUEST:
svm_emit_page(((size_t*) mail->payload)[1], ((size_t*) mail->payload)[0]);
break;
case NOISE:
// kprintf( "XXX " );
default:
// kprintf( "icc_mail_check_tag: uknown tag id %d\n", mail->tag );
break;
}
}
int icc_mail_ping(void)
{
uint32_t flags;
uint64_t timer = 0;
int i;
int res;
iRCCE_MAIL_HEADER* recv_header = NULL;
/* leave function if not participating in pingpong */
if( (my_ue != CORE_A) && (my_ue != CORE_B) ) return -1;
kprintf( "my_ue = %d\n", my_ue );
kprintf( "Hello from mail_ping ... \n" );
kprintf( "rounds = %d\n", ROUNDS );
// disable interrupts
flags = irq_nested_disable();
for( i=0; i<ROUNDS+1; ++i ) {
/* senders part */
if( my_ue == CORE_A ) {
/* send ping request */
iRCCE_mail_send(0, PING_REQ, 0, NULL, CORE_B);
/* wait for response */
do {
res = iRCCE_mail_check(CORE_B);
} while( res != iRCCE_SUCCESS );
/* release mail */
iRCCE_mail_recv(&recv_header);
iRCCE_mail_release(&recv_header);
}
/* receivers part */
else {
/* wait for request */
do {
res = iRCCE_mail_check(CORE_A);
} while( res != iRCCE_SUCCESS );
/* check mail */
res = iRCCE_mail_recv(&recv_header);
icc_mail_check_tag(recv_header);
/* release mail */
iRCCE_mail_release(&recv_header);
}
/* start timer in first round */
if( i == 0 ) timer = rdtsc();
}
/* stop timer */
timer = rdtsc() - timer;
if( my_ue == CORE_A ) {
kprintf( "timer = %ld\n", timer );
kprintf( "mail_pingpong needs in average %d ns (%d ticks)!\n",
timer*1000/(2*ROUNDS*get_cpu_frequency()), timer/(2*ROUNDS) );
}
irq_nested_enable(flags);
return 0;
}
int icc_mail_ping_irq(void)
{
kprintf( "Hello from mail_ping_irq ... \n" );
/* return if not core A */
if( my_ue != CORE_A ) return 0;
uint32_t flags;
uint64_t timer = 0;
int i;
int res;
iRCCE_MAIL_HEADER* recv_header = NULL;
kprintf( "my_rank = %d\n", my_ue );
kprintf( "rem_rank = %d\n", CORE_B );
kprintf( "rounds = %d\n", ROUNDS );
// disable interrupts
flags = irq_nested_disable();
for( i=0; i<ROUNDS+1; ++i ) {
/* send ping request */
iRCCE_mail_send(0, PING_REQ, 0, NULL, CORE_B);
/* send interrupt */
icc_send_gic_irq(CORE_B);
/* wait for response */
do {
res = iRCCE_mail_check(CORE_B);
} while( res != iRCCE_SUCCESS );
iRCCE_mail_recv(&recv_header);
iRCCE_mail_release(&recv_header);
/* start timer in first round */
if( i == 0 ) timer = rdtsc();
}
/* stop timer */
timer = rdtsc() - timer;
kprintf( "timer = %d\n", timer );
kprintf( "mail_pingpong needs in average %d nsec (%d ticks)!\n",
timer*1000/(2*ROUNDS*get_cpu_frequency()), timer/(2*ROUNDS) );
irq_nested_enable(flags);
return 0;
}
#define _iRQ_NOISE_ 0
int icc_mail_noise(void) {
int i, j, res;
int num_ranks = RCCE_num_ues();
iRCCE_MAIL_HEADER* recv_mail = NULL;
// leave function if not participating
if( !((my_ue == 4) || (my_ue == 2) || (my_ue == CORE_B)) ) {
kprintf( "mail_noise: leaving" );
return -1;
}
kprintf( "Hello from icc_mail_noise: my_ue = %d\n", my_ue );
kprintf( "num_ues = %d\n", num_ranks );
for( i=0; i<10000; ++i ) {
if( !(i%1000) ) kprintf( "%d ", i );
/* send a mail to each UE */
for( j=0; j<num_ranks; ++j ) {
if( !((j == 4) || (j == 2)/* || (j == CORE_B) */) )
continue;
/* send noise mail */
iRCCE_mail_send(0, NOISE, 1, NULL, j);
#ifdef _IRQ_NOISE_
kprintf( "sending irq ... " );
icc_send_gic_irq(j);
#endif
iRCCE_mail_recv(&recv_mail);
icc_mail_check_tag(recv_mail);
if( recv_mail ) iRCCE_mail_release(&recv_mail);
}
}
kprintf( "XXX XXX XXX" );
do {
iRCCE_mail_check(iRCCE_MAILBOX_ALL);
res = iRCCE_mail_recv(&recv_mail);
icc_mail_check_tag(recv_mail);
if( recv_mail ) iRCCE_mail_release(&recv_mail);
} while( res == iRCCE_SUCCESS );
return 0;
}
/*
* Routine to check mailboxes. If irq = 1 is passed only those boxes are checked that
* refere to the cores with set bit in status register.
*
*/
void icc_mail_check(int irq)
{
iRCCE_MAIL_HEADER* header = NULL;
int source, res;
volatile uint64_t* irq_status_reg = NULL;
volatile uint64_t* irq_reset_reg = NULL;
uint64_t irq_status = 0;
uint64_t irq_reset = 0;
uint32_t flags;
/* disable interrupts */
flags = irq_nested_disable();
if( irq == 1 ) {
/* read status register */
irq_status_reg = (volatile uint64_t*)(FPGA_BASE + IRQ_STATUS + my_ue*8);
irq_status = irq_reset = *irq_status_reg;
/* determine interrupt sources */
irq_status >>= 6; // shift emac bits
for( source = 0; irq_status != 0; irq_status >>= 1, ++source ) {
if( (irq_status & 0x1) != 0 ) {
res = iRCCE_mail_check(source);
}
}
/* reset status register */
irq_reset_reg = (volatile uint64_t*)(FPGA_BASE + IRQ_RESET + my_ue*8);
*irq_reset_reg = irq_reset;
}
else {
iRCCE_mail_check(iRCCE_MAILBOX_ALL);
}
/* enable interrupts */
irq_nested_enable(flags);
/* empty mail queue */
while( iRCCE_mail_recv(&header) == iRCCE_SUCCESS ) {
icc_mail_check_tag(header);
iRCCE_mail_release( &header );
NOP8;
NOP8;
NOP8;
}
}
#endif