spectrum2/3rdparty/cpprestsdk/include/cpprest/producerconsumerstream.h
2015-11-19 15:19:14 +01:00

709 lines
No EOL
27 KiB
C++

/***
* ==++==
*
* Copyright (c) Microsoft Corporation. All rights reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ==--==
* =+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
*
* This file defines a basic memory-based stream buffer, which allows consumer / producer pairs to communicate
* data via a buffer.
*
* For the latest on this and related APIs, please see http://casablanca.codeplex.com.
*
* =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
****/
#pragma once
#ifndef _CASA_PRODUCER_CONSUMER_STREAMS_H
#define _CASA_PRODUCER_CONSUMER_STREAMS_H
#include <vector>
#include <queue>
#include <algorithm>
#include <iterator>
#include "pplx/pplxtasks.h"
#include "cpprest/astreambuf.h"
namespace Concurrency { namespace streams {
namespace details {
/// <summary>
/// The basic_producer_consumer_buffer class serves as a memory-based steam buffer that supports both writing and reading
/// sequences of characters. It can be used as a consumer/producer buffer.
/// </summary>
template<typename _CharType>
class basic_producer_consumer_buffer : public streams::details::streambuf_state_manager<_CharType>
{
public:
typedef typename ::concurrency::streams::char_traits<_CharType> traits;
typedef typename basic_streambuf<_CharType>::int_type int_type;
typedef typename basic_streambuf<_CharType>::pos_type pos_type;
typedef typename basic_streambuf<_CharType>::off_type off_type;
/// <summary>
/// Constructor
/// </summary>
basic_producer_consumer_buffer(size_t alloc_size)
: streambuf_state_manager<_CharType>(std::ios_base::out | std::ios_base::in),
m_alloc_size(alloc_size),
m_allocBlock(nullptr),
m_total(0), m_total_read(0), m_total_written(0),
m_synced(0)
{
}
/// <summary>
/// Destructor
/// </summary>
virtual ~basic_producer_consumer_buffer()
{
// Note: there is no need to call 'wait()' on the result of close(),
// since we happen to know that close() will return without actually
// doing anything asynchronously. Should the implementation of _close_write()
// change in that regard, this logic may also have to change.
this->_close_read();
this->_close_write();
_ASSERTE(m_requests.empty());
m_blocks.clear();
}
/// <summary>
/// <c>can_seek<c/> is used to determine whether a stream buffer supports seeking.
/// </summary>
virtual bool can_seek() const { return false; }
/// <summary>
/// <c>has_size<c/> is used to determine whether a stream buffer supports size().
/// </summary>
virtual bool has_size() const { return false; }
/// <summary>
/// Get the stream buffer size, if one has been set.
/// </summary>
/// <param name="direction">The direction of buffering (in or out)</param>
/// <remarks>An implementation that does not support buffering will always return '0'.</remarks>
virtual size_t buffer_size(std::ios_base::openmode = std::ios_base::in) const
{
return 0;
}
/// <summary>
/// Sets the stream buffer implementation to buffer or not buffer.
/// </summary>
/// <param name="size">The size to use for internal buffering, 0 if no buffering should be done.</param>
/// <param name="direction">The direction of buffering (in or out)</param>
/// <remarks>An implementation that does not support buffering will silently ignore calls to this function and it will not have any effect on what is returned by subsequent calls to <see cref="::buffer_size method" />.</remarks>
virtual void set_buffer_size(size_t , std::ios_base::openmode = std::ios_base::in)
{
return;
}
/// <summary>
/// For any input stream, <c>in_avail</c> returns the number of characters that are immediately available
/// to be consumed without blocking. May be used in conjunction with <cref="::sbumpc method"/> to read data without
/// incurring the overhead of using tasks.
/// </summary>
virtual size_t in_avail() const { return m_total; }
/// <summary>
/// Gets the current read or write position in the stream.
/// </summary>
/// <param name="direction">The I/O direction to seek (see remarks)</param>
/// <returns>The current position. EOF if the operation fails.</returns>
/// <remarks>Some streams may have separate write and read cursors.
/// For such streams, the direction parameter defines whether to move the read or the write cursor.</remarks>
virtual pos_type getpos(std::ios_base::openmode mode) const
{
if ( ((mode & std::ios_base::in) && !this->can_read()) ||
((mode & std::ios_base::out) && !this->can_write()))
return static_cast<pos_type>(traits::eof());
if (mode == std::ios_base::in)
return (pos_type)m_total_read;
else if (mode == std::ios_base::out)
return (pos_type)m_total_written;
else
return (pos_type)traits::eof();
}
// Seeking is not supported
virtual pos_type seekpos(pos_type, std::ios_base::openmode) { return (pos_type)traits::eof(); }
virtual pos_type seekoff(off_type , std::ios_base::seekdir , std::ios_base::openmode ) { return (pos_type)traits::eof(); }
/// <summary>
/// Allocates a contiguous memory block and returns it.
/// </summary>
/// <param name="count">The number of characters to allocate.</param>
/// <returns>A pointer to a block to write to, null if the stream buffer implementation does not support alloc/commit.</returns>
virtual _CharType* _alloc(size_t count)
{
if (!this->can_write())
{
return nullptr;
}
// We always allocate a new block even if the count could be satisfied by
// the current write block. While this does lead to wasted space it allows for
// easier book keeping
_ASSERTE(!m_allocBlock);
m_allocBlock = std::make_shared<_block>(count);
return m_allocBlock->wbegin();
}
/// <summary>
/// Submits a block already allocated by the stream buffer.
/// </summary>
/// <param name="count">The number of characters to be committed.</param>
virtual void _commit(size_t count)
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
// The count does not reflect the actual size of the block.
// Since we do not allow any more writes to this block it would suffice.
// If we ever change the algorithm to reuse blocks then this needs to be revisited.
_ASSERTE((bool)m_allocBlock);
m_allocBlock->update_write_head(count);
m_blocks.push_back(m_allocBlock);
m_allocBlock = nullptr;
update_write_head(count);
}
/// <summary>
/// Gets a pointer to the next already allocated contiguous block of data.
/// </summary>
/// <param name="ptr">A reference to a pointer variable that will hold the address of the block on success.</param>
/// <param name="count">The number of contiguous characters available at the address in 'ptr.'</param>
/// <returns><c>true</c> if the operation succeeded, <c>false</c> otherwise.</returns>
/// <remarks>
/// A return of false does not necessarily indicate that a subsequent read operation would fail, only that
/// there is no block to return immediately or that the stream buffer does not support the operation.
/// The stream buffer may not de-allocate the block until <see cref="::release method" /> is called.
/// If the end of the stream is reached, the function will return <c>true</c>, a null pointer, and a count of zero;
/// a subsequent read will not succeed.
/// </remarks>
virtual bool acquire(_Out_ _CharType*& ptr, _Out_ size_t& count)
{
count = 0;
ptr = nullptr;
if (!this->can_read()) return false;
pplx::extensibility::scoped_critical_section_t l(m_lock);
if (m_blocks.empty())
{
// If the write head has been closed then have reached the end of the
// stream (return true), otherwise more data could be written later (return false).
return !this->can_write();
}
else
{
auto block = m_blocks.front();
count = block->rd_chars_left();
ptr = block->rbegin();
_ASSERTE(ptr != nullptr);
return true;
}
}
/// <summary>
/// Releases a block of data acquired using <see cref="::acquire method"/>. This frees the stream buffer to de-allocate the
/// memory, if it so desires. Move the read position ahead by the count.
/// </summary>
/// <param name="ptr">A pointer to the block of data to be released.</param>
/// <param name="count">The number of characters that were read.</param>
virtual void release(_Out_writes_opt_ (count) _CharType *ptr, _In_ size_t count)
{
if (ptr == nullptr) return;
pplx::extensibility::scoped_critical_section_t l(m_lock);
auto block = m_blocks.front();
_ASSERTE(block->rd_chars_left() >= count);
block->m_read += count;
update_read_head(count);
}
protected:
virtual pplx::task<bool> _sync()
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
m_synced = in_avail();
fulfill_outstanding();
return pplx::task_from_result(true);
}
virtual pplx::task<int_type> _putc(_CharType ch)
{
return pplx::task_from_result((this->write(&ch, 1) == 1) ? static_cast<int_type>(ch) : traits::eof());
}
virtual pplx::task<size_t> _putn(const _CharType *ptr, size_t count)
{
return pplx::task_from_result<size_t>(this->write(ptr, count));
}
virtual pplx::task<size_t> _getn(_Out_writes_ (count) _CharType *ptr, _In_ size_t count)
{
pplx::task_completion_event<size_t> tce;
enqueue_request(_request(count, [this, ptr, count, tce]()
{
// VS 2010 resolves read to a global function. Explicit
// invocation through the "this" pointer fixes the issue.
tce.set(this->read(ptr, count));
}));
return pplx::create_task(tce);
}
virtual size_t _sgetn(_Out_writes_ (count) _CharType *ptr, _In_ size_t count)
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
return can_satisfy(count) ? this->read(ptr, count) : (size_t)traits::requires_async();
}
virtual size_t _scopy(_Out_writes_ (count) _CharType *ptr, _In_ size_t count)
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
return can_satisfy(count) ? this->read(ptr, count, false) : (size_t)traits::requires_async();
}
virtual pplx::task<int_type> _bumpc()
{
pplx::task_completion_event<int_type> tce;
enqueue_request(_request(1, [this, tce]()
{
tce.set(this->read_byte(true));
}));
return pplx::create_task(tce);
}
virtual int_type _sbumpc()
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
return can_satisfy(1) ? this->read_byte(true) : traits::requires_async();
}
virtual pplx::task<int_type> _getc()
{
pplx::task_completion_event<int_type> tce;
enqueue_request(_request(1, [this, tce]()
{
tce.set(this->read_byte(false));
}));
return pplx::create_task(tce);
}
int_type _sgetc()
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
return can_satisfy(1) ? this->read_byte(false) : traits::requires_async();
}
virtual pplx::task<int_type> _nextc()
{
pplx::task_completion_event<int_type> tce;
enqueue_request(_request(1, [this, tce]()
{
this->read_byte(true);
tce.set(this->read_byte(false));
}));
return pplx::create_task(tce);
}
virtual pplx::task<int_type> _ungetc()
{
return pplx::task_from_result<int_type>(traits::eof());
}
private:
/// <summary>
/// Close the stream buffer for writing
/// </summary>
pplx::task<void> _close_write()
{
// First indicate that there could be no more writes.
// Fulfill outstanding relies on that to flush all the
// read requests.
this->m_stream_can_write = false;
{
pplx::extensibility::scoped_critical_section_t l(this->m_lock);
// This runs on the thread that called close.
this->fulfill_outstanding();
}
return pplx::task_from_result();
}
/// <summary>
/// Updates the write head by an offset specified by count
/// </summary>
/// <remarks>This should be called with the lock held</remarks>
void update_write_head(size_t count)
{
m_total += count;
m_total_written += count;
fulfill_outstanding();
}
/// <summary>
/// Writes count characters from ptr into the stream buffer
/// </summary>
size_t write(const _CharType *ptr, size_t count)
{
if (!this->can_write() || (count == 0)) return 0;
// If no one is going to read, why bother?
// Just pretend to be writing!
if (!this->can_read()) return count;
pplx::extensibility::scoped_critical_section_t l(m_lock);
// Allocate a new block if necessary
if ( m_blocks.empty() || m_blocks.back()->wr_chars_left() < count )
{
msl::safeint3::SafeInt<size_t> alloc = m_alloc_size.Max(count);
m_blocks.push_back(std::make_shared<_block>(alloc));
}
// The block at the back is always the write head
auto last = m_blocks.back();
auto countWritten = last->write(ptr, count);
_ASSERTE(countWritten == count);
update_write_head(countWritten);
return countWritten;
}
/// <summary>
/// Fulfill pending requests
/// </summary>
/// <remarks>This should be called with the lock held</remarks>
void fulfill_outstanding()
{
while ( !m_requests.empty() )
{
auto req = m_requests.front();
// If we cannot satisfy the request then we need
// to wait for the producer to write data
if (!can_satisfy(req.size())) return;
// We have enough data to satisfy this request
req.complete();
// Remove it from the request queue
m_requests.pop();
}
}
/// <summary>
/// Represents a memory block
/// </summary>
class _block
{
public:
_block(size_t size)
: m_read(0), m_pos(0), m_size(size), m_data(new _CharType[size])
{
}
~_block()
{
delete [] m_data;
}
// Read head
size_t m_read;
// Write head
size_t m_pos;
// Allocation size (of m_data)
size_t m_size;
// The data store
_CharType * m_data;
// Pointer to the read head
_CharType * rbegin()
{
return m_data + m_read;
}
// Pointer to the write head
_CharType * wbegin()
{
return m_data + m_pos;
}
// Read up to count characters from the block
size_t read(_Out_writes_ (count) _CharType * dest, _In_ size_t count, bool advance = true)
{
msl::safeint3::SafeInt<size_t> avail(rd_chars_left());
auto countRead = static_cast<size_t>(avail.Min(count));
_CharType * beg = rbegin();
_CharType * end = rbegin() + countRead;
#ifdef _WIN32
// Avoid warning C4996: Use checked iterators under SECURE_SCL
std::copy(beg, end, stdext::checked_array_iterator<_CharType *>(dest, count));
#else
std::copy(beg, end, dest);
#endif // _WIN32
if (advance)
{
m_read += countRead;
}
return countRead;
}
// Write count characters into the block
size_t write(const _CharType * src, size_t count)
{
msl::safeint3::SafeInt<size_t> avail(wr_chars_left());
auto countWritten = static_cast<size_t>(avail.Min(count));
const _CharType * srcEnd = src + countWritten;
#ifdef _WIN32
// Avoid warning C4996: Use checked iterators under SECURE_SCL
std::copy(src, srcEnd, stdext::checked_array_iterator<_CharType *>(wbegin(), static_cast<size_t>(avail)));
#else
std::copy(src, srcEnd, wbegin());
#endif // _WIN32
update_write_head(countWritten);
return countWritten;
}
void update_write_head(size_t count)
{
m_pos += count;
}
size_t rd_chars_left() const { return m_pos-m_read; }
size_t wr_chars_left() const { return m_size-m_pos; }
private:
// Copy is not supported
_block(const _block&);
_block& operator=(const _block&);
};
/// <summary>
/// Represents a request on the stream buffer - typically reads
/// </summary>
class _request
{
public:
typedef std::function<void()> func_type;
_request(size_t count, const func_type& func)
: m_func(func), m_count(count)
{
}
void complete()
{
m_func();
}
size_t size() const
{
return m_count;
}
private:
func_type m_func;
size_t m_count;
};
void enqueue_request(_request req)
{
pplx::extensibility::scoped_critical_section_t l(m_lock);
if (can_satisfy(req.size()))
{
// We can immediately fulfill the request.
req.complete();
}
else
{
// We must wait for data to arrive.
m_requests.push(req);
}
}
/// <summary>
/// Determine if the request can be satisfied.
/// </summary>
bool can_satisfy(size_t count)
{
return (m_synced > 0) || (this->in_avail() >= count) || !this->can_write();
}
/// <summary>
/// Reads a byte from the stream and returns it as int_type.
/// Note: This routine shall only be called if can_satisfy() returned true.
/// </summary>
/// <remarks>This should be called with the lock held</remarks>
int_type read_byte(bool advance = true)
{
_CharType value;
auto read_size = this->read(&value, 1, advance);
return read_size == 1 ? static_cast<int_type>(value) : traits::eof();
}
/// <summary>
/// Reads up to count characters into ptr and returns the count of characters copied.
/// The return value (actual characters copied) could be <= count.
/// Note: This routine shall only be called if can_satisfy() returned true.
/// </summary>
/// <remarks>This should be called with the lock held</remarks>
size_t read(_Out_writes_ (count) _CharType *ptr, _In_ size_t count, bool advance = true)
{
_ASSERTE(can_satisfy(count));
size_t read = 0;
for (auto iter = begin(m_blocks); iter != std::end(m_blocks); ++iter)
{
auto block = *iter;
auto read_from_block = block->read(ptr + read, count - read, advance);
read += read_from_block;
_ASSERTE(count >= read);
if (read == count) break;
}
if (advance)
{
update_read_head(read);
}
return read;
}
/// <summary>
/// Updates the read head by the specified offset
/// </summary>
/// <remarks>This should be called with the lock held</remarks>
void update_read_head(size_t count)
{
m_total -= count;
m_total_read += count;
if ( m_synced > 0 )
m_synced = (m_synced > count) ? (m_synced-count) : 0;
// The block at the front is always the read head.
// Purge empty blocks so that the block at the front reflects the read head
while (!m_blocks.empty())
{
// If front block is not empty - we are done
if (m_blocks.front()->rd_chars_left() > 0) break;
// The block has no more data to be read. Relase the block
m_blocks.pop_front();
}
}
// The in/out mode for the buffer
std::ios_base::openmode m_mode;
// Default block size
msl::safeint3::SafeInt<size_t> m_alloc_size;
// Block used for alloc/commit
std::shared_ptr<_block> m_allocBlock;
// Total available data
size_t m_total;
size_t m_total_read;
size_t m_total_written;
// Keeps track of the number of chars that have been flushed but still
// remain to be consumed by a read operation.
size_t m_synced;
// The producer-consumer buffer is intended to be used concurrently by a reader
// and a writer, who are not coordinating their accesses to the buffer (coordination
// being what the buffer is for in the first place). Thus, we have to protect
// against some of the internal data elements against concurrent accesses
// and the possibility of inconsistent states. A simple non-recursive lock
// should be sufficient for those purposes.
pplx::extensibility::critical_section_t m_lock;
// Memory blocks
std::deque<std::shared_ptr<_block>> m_blocks;
// Queue of requests
std::queue<_request> m_requests;
};
} // namespace details
/// <summary>
/// The producer_consumer_buffer class serves as a memory-based steam buffer that supports both writing and reading
/// sequences of bytes. It can be used as a consumer/producer buffer.
/// </summary>
/// <typeparam name="_CharType">
/// The data type of the basic element of the <c>producer_consumer_buffer</c>.
/// </typeparam>
/// <remarks>
/// This is a reference-counted version of basic_producer_consumer_buffer.</remarks>
template<typename _CharType>
class producer_consumer_buffer : public streambuf<_CharType>
{
public:
typedef _CharType char_type;
/// <summary>
/// Create a producer_consumer_buffer.
/// </summary>
/// <param name="alloc_size">The internal default block size.</param>
producer_consumer_buffer(size_t alloc_size = 512)
: streambuf<_CharType>(std::make_shared<details::basic_producer_consumer_buffer<_CharType>>(alloc_size))
{
}
};
}} // namespaces
#endif