1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00
VILLASnode/lib/nodes/signal.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

355 lines
7.8 KiB
C++
Raw Permalink Normal View History

/* Node-type for signal generation.
*
2022-03-15 09:18:01 -04:00
* Author: Steffen Vogel <post@steffenvogel.de>
2022-03-15 09:28:57 -04:00
* SPDX-FileCopyrightText: 2014-2023 Institute for Automation of Complex Power Systems, RWTH Aachen University
2022-07-04 18:20:03 +02:00
* SPDX-License-Identifier: Apache-2.0
*/
#include <cmath>
#include <cstring>
#include <list>
#include <villas/exceptions.hpp>
#include <villas/node_compat.hpp>
#include <villas/nodes/signal.hpp>
#include <villas/utils.hpp>
using namespace villas;
using namespace villas::node;
using namespace villas::utils;
SignalNodeSignal::SignalNodeSignal(json_t *json)
: type(Type::MIXED), frequency(1.0), amplitude(1.0), stddev(0.2),
offset(0.0), pulse_width(1.0), pulse_low(0.0), pulse_high(1.0),
phase(0.0) {
parse(json);
last = offset;
}
enum SignalNodeSignal::Type
SignalNodeSignal::lookupType(const std::string &type) {
if (type == "random")
return Type::RANDOM;
else if (type == "sine")
return Type::SINE;
else if (type == "square")
return Type::SQUARE;
else if (type == "triangle")
return Type::TRIANGLE;
else if (type == "ramp")
return Type::RAMP;
else if (type == "counter")
return Type::COUNTER;
else if (type == "constant")
return Type::CONSTANT;
else if (type == "mixed")
return Type::MIXED;
else if (type == "pulse")
return Type::PULSE;
throw std::invalid_argument("Invalid signal type");
}
std::string SignalNodeSignal::typeToString(enum Type type) {
switch (type) {
case Type::CONSTANT:
return "constant";
case Type::SINE:
return "sine";
case Type::TRIANGLE:
return "triangle";
case Type::SQUARE:
return "square";
case Type::RAMP:
return "ramp";
case Type::COUNTER:
return "counter";
case Type::RANDOM:
return "random";
case Type::MIXED:
return "mixed";
case Type::PULSE:
return "pulse";
default:
return nullptr;
}
}
void SignalNodeSignal::start() { last = offset; }
void SignalNodeSignal::read(unsigned c, double t, double r, SignalData *d) {
switch (type) {
case Type::CONSTANT:
d->f = offset + amplitude;
break;
case Type::SINE:
d->f = offset + amplitude * sin(t * frequency * 2 * M_PI + phase);
break;
case Type::TRIANGLE:
d->f =
offset +
amplitude *
(fabs(fmod(t * frequency + (phase / (2 * M_PI)), 1) - .5) - 0.25) *
4;
break;
case Type::SQUARE:
d->f = offset +
amplitude *
((fmod(t * frequency + (phase / (2 * M_PI)), 1) < .5) ? -1 : 1);
break;
case Type::RAMP:
d->f = offset + amplitude * fmod(t, frequency);
break;
case Type::COUNTER:
d->f = offset + amplitude * c;
break;
case Type::RANDOM:
last += boxMuller(0, stddev);
d->f = last;
break;
case Type::MIXED:
break;
case Type::PULSE:
d->f =
abs(fmod(t * frequency + (phase / (2 * M_PI)), 1)) <= (pulse_width / r)
? pulse_high
: pulse_low;
d->f += offset;
break;
}
}
int SignalNodeSignal::parse(json_t *json) {
int ret;
const char *type_str;
json_error_t err;
ret = json_unpack_ex(
json, &err, 0,
"{ s: s, s?: F, s?: F, s?: F, s?: F, s?: F, s?: F, s?: F, s?: F }",
"signal", &type_str, "frequency", &frequency, "amplitude", &amplitude,
"stddev", &stddev, "offset", &offset, "pulse_width", &pulse_width,
"pulse_low", &pulse_low, "pulse_high", &pulse_high, "phase", &phase);
if (ret)
throw ConfigError(json, err, "node-config-node-signal");
try {
type = lookupType(type_str);
} catch (std::invalid_argument &e) {
throw ConfigError(json, "node-config-node-signal-type",
"Unknown signal type: {}", type_str);
}
return 0;
}
Signal::Ptr SignalNodeSignal::toSignal(Signal::Ptr tpl) const {
auto isDefaultName = tpl->name.rfind("signal", 0) == 0;
auto name = isDefaultName ? typeToString(type) : tpl->name;
auto unit = tpl->unit;
auto sig = std::make_shared<Signal>(name, unit, SignalType::FLOAT);
sig->init.f = offset;
return sig;
}
SignalNode::SignalNode(const uuid_t &id, const std::string &name)
: Node(id, name), task(CLOCK_MONOTONIC), rt(1), rate(10),
monitor_missed(true), limit(-1), missed_steps(0) {}
int SignalNode::prepare() {
assert(state == State::CHECKED);
for (unsigned i = 0; i < signals.size(); i++) {
auto &sig = (*in.signals)[i];
auto &ssig = signals[i];
sig = ssig.toSignal(sig);
}
2022-02-24 07:31:54 -05:00
if (logger->level() <= spdlog::level::debug)
in.signals->dump(logger);
return Node::prepare();
}
int SignalNode::parse(json_t *json) {
int r = -1, m = -1, ret = Node::parse(json);
if (ret)
return ret;
json_error_t err;
size_t i;
json_t *json_signals, *json_signal;
ret = json_unpack_ex(json, &err, 0,
"{ s?: b, s?: i, s?: F, s?: b, s: { s: o } }",
"realtime", &r, "limit", &limit, "rate", &rate,
"monitor_missed", &m, "in", "signals", &json_signals);
if (ret)
throw ConfigError(json, err, "node-config-node-signal");
if (r >= 0)
rt = r != 0;
if (m >= 0)
monitor_missed = m != 0;
signals.clear();
unsigned j = 0;
json_array_foreach(json_signals, i, json_signal) {
auto sig = SignalNodeSignal(json_signal);
if (sig.type == SignalNodeSignal::Type::MIXED)
sig.type =
(SignalNodeSignal::Type)(j++ % (int)SignalNodeSignal::Type::MIXED);
signals.push_back(sig);
}
state = State::PARSED;
return 0;
}
int SignalNode::start() {
assert(state == State::PREPARED || state == State::PAUSED);
missed_steps = 0;
started = time_now();
for (auto sig : signals)
sig.start();
// Setup task
if (rt)
task.setRate(rate);
int ret = Node::start();
if (!ret)
state = State::STARTED;
return ret;
}
int SignalNode::stop() {
assert(state == State::STARTED || state == State::PAUSED ||
state == State::STOPPING);
int ret = Node::stop();
if (ret)
return ret;
if (rt)
task.stop();
if (missed_steps > 0 && monitor_missed)
logger->warn("Missed a total of {} steps.", missed_steps);
state = State::STOPPED;
return 0;
}
int SignalNode::_read(struct Sample *smps[], unsigned cnt) {
struct Sample *t = smps[0];
struct timespec ts;
uint64_t steps, counter = sequence - sequence_init;
assert(cnt == 1);
if (rt)
ts = time_now();
else {
struct timespec offset = time_from_double(counter * 1.0 / rate);
ts = time_add(&started, &offset);
}
double running = time_delta(&started, &ts);
t->flags = (int)SampleFlags::HAS_TS_ORIGIN | (int)SampleFlags::HAS_DATA |
(int)SampleFlags::HAS_SEQUENCE;
t->ts.origin = ts;
t->sequence = sequence;
t->length = MIN(signals.size(), t->capacity);
t->signals = in.signals;
for (unsigned i = 0; i < t->length; i++) {
auto &sig = signals[i];
sig.read(counter, running, rate, &t->data[i]);
}
if (limit > 0 && counter >= (unsigned)limit) {
logger->info("Reached limit.");
setState(State::STOPPING);
return -1;
}
// Throttle output if desired
if (rt) {
// Block until 1/p->rate seconds elapsed
steps = task.wait();
if (steps > 1 && monitor_missed) {
logger->debug("Missed steps: {}", steps - 1);
missed_steps += steps - 1;
}
} else
steps = 1;
sequence += steps;
return 1;
}
const std::string &SignalNode::getDetails() {
if (details.empty()) {
details = fmt::format("rt={}, rate={}", rt ? "yes" : "no", rate);
if (limit > 0)
details += fmt::format(", limit={}", limit);
}
return details;
}
std::vector<int> SignalNode::getPollFDs() {
if (rt)
return {task.getFD()};
return {};
}
// Register node
static char n[] = "signal.v2";
static char d[] = "Signal generator";
static NodePlugin<SignalNode, n, d,
(int)NodeFactory::Flags::SUPPORTS_READ |
(int)NodeFactory::Flags::SUPPORTS_POLL>
p;