1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00

Merge branch 'infiniband' into develop

# Conflicts:
#	Makefile
#	Makefile.config
#	Makefile.help
#	lib/Makefile.villas-ext.inc
#	lib/Makefile.villas.inc
#	lib/memory.c
#	lib/nodes/Makefile.inc
This commit is contained in:
Steffen Vogel 2018-07-04 16:50:36 +02:00
commit 4d09482fdb
39 changed files with 1734 additions and 369 deletions

View file

@ -20,11 +20,17 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#pragma once
#include <pthread.h>
#include <stdbool.h>
#include <villas/common.h>
#ifdef __cplusplus
extern "C" {
#endif
struct hash_table_entry {
void *key;
void *data;
@ -73,3 +79,7 @@ void * hash_table_lookup(struct hash_table *ht, void *key);
/** Dump the contents of the hash table in a human readable format to stdout. */
void hash_table_dump(struct hash_table *ht);
#ifdef __cplusplus
}
#endif

View file

@ -57,7 +57,7 @@ extern "C" {
enum log_facilities {
LOG_POOL = (1L << 8),
LOG_QUEUE = (1L << 9),
LOG_CONFIG = (1L << 10),
LOG_CONFIG = (1L << 10),
LOG_HOOK = (1L << 11),
LOG_PATH = (1L << 12),
LOG_NODE = (1L << 13),
@ -73,16 +73,17 @@ enum log_facilities {
LOG_ADVIO = (1L << 23),
/* Node-types */
LOG_SOCKET = (1L << 24),
LOG_SOCKET = (1L << 24),
LOG_FILE = (1L << 25),
LOG_FPGA = (1L << 26),
LOG_NGSI = (1L << 27),
LOG_WEBSOCKET = (1L << 28),
LOG_WEBSOCKET = (1L << 28),
LOG_OPAL = (1L << 30),
LOG_COMEDI = (1L << 31),
LOG_COMEDI = (1L << 31),
LOG_IB = (1L << 32),
/* Classes */
LOG_NODES = LOG_NODE | LOG_SOCKET | LOG_FILE | LOG_FPGA | LOG_NGSI | LOG_WEBSOCKET | LOG_OPAL,
LOG_NODES = LOG_NODE | LOG_SOCKET | LOG_FILE | LOG_FPGA | LOG_NGSI | LOG_WEBSOCKET | LOG_OPAL | LOG_IB,
LOG_KERNEL = LOG_VFIO | LOG_PCI | LOG_TC | LOG_IF,
LOG_ALL = ~0xFF
};

View file

@ -25,57 +25,46 @@
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#include <villas/memory_type.h>
#ifdef __cplusplus
extern "C" {
#endif
#define HUGEPAGESIZE (1 << 21)
struct memtype;
typedef void *(*memzone_allocator_t)(struct memtype *mem, size_t len, size_t alignment);
typedef int (*memzone_deallocator_t)(struct memtype *mem, void *ptr, size_t len);
enum memtype_flags {
MEMORY_MMAP = (1 << 0),
MEMORY_DMA = (1 << 1),
MEMORY_HUGEPAGE = (1 << 2),
MEMORY_HEAP = (1 << 3)
};
struct memtype {
const char *name;
int flags;
size_t alignment;
memzone_allocator_t alloc;
memzone_deallocator_t free;
void *_vd; /**<Virtual data for possible state */
};
enum memblock_flags {
MEMBLOCK_USED = 1,
};
/* Forward declarations */
struct node;
/** Descriptor of a memory block. Associated block always starts at
* &m + sizeof(struct memblock). */
struct memblock {
struct memblock *prev;
struct memblock *next;
size_t len; /**<Length of the block; doesn't include the descriptor itself */
int flags;
* &m + sizeof(struct memory_block). */
struct memory_block {
struct memory_block *prev;
struct memory_block *next;
size_t length; /**< Length of the block; doesn't include the descriptor itself */
bool used;
};
/** @todo Unused for now */
struct memzone {
struct memtype *const type;
struct memory_allocation {
struct memory_type *type;
void *addr;
uintptr_t physaddr;
size_t len;
struct memory_allocation *parent;
void *address;
size_t alignment;
size_t length;
union {
#ifdef WITH_NODE_INFINIBAND
struct {
struct ibv_mr *mr;
} ib;
#endif
struct {
struct memory_block *block;
} managed;
};
};
/** Initilialize memory subsystem */
@ -86,16 +75,13 @@ int memory_init(int hugepages);
* @retval NULL If allocation failed.
* @retval <>0 If allocation was successful.
*/
void * memory_alloc(struct memtype *m, size_t len);
void * memory_alloc(struct memory_type *m, size_t len);
void * memory_alloc_aligned(struct memtype *m, size_t len, size_t alignment);
void * memory_alloc_aligned(struct memory_type *m, size_t len, size_t alignment);
int memory_free(struct memtype *m, void *ptr, size_t len);
int memory_free(void *ptr);
struct memtype * memtype_managed_init(void *ptr, size_t len);
extern struct memtype memtype_heap;
extern struct memtype memtype_hugepage;
struct memory_allocation * memory_get_allocation(void *ptr);
#ifdef __cplusplus
}

View file

@ -0,0 +1,70 @@
/** Memory allocators.
*
* @file
* @author Steffen Vogel <stvogel@eonerc.rwth-aachen.de>
* @copyright 2017, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#pragma once
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Forward declaratio */
struct memory_type;
typedef struct memory_allocation * (*memory_allocator_t)(struct memory_type *mem, size_t len, size_t alignment);
typedef int (*memory_deallocator_t)(struct memory_type *mem, struct memory_allocation * ma);
enum memory_type_flags {
MEMORY_MMAP = (1 << 0),
MEMORY_DMA = (1 << 1),
MEMORY_HUGEPAGE = (1 << 2),
MEMORY_HEAP = (1 << 3)
};
struct memory_type {
const char *name;
int flags;
size_t alignment;
memory_allocator_t alloc;
memory_deallocator_t free;
void *_vd; /**< Virtual data for internal state */
};
extern struct memory_type memory_type_heap;
extern struct memory_type memory_hugepage;
struct ibv_mr * memory_type_ib_mr(void *ptr);
struct node;
struct memory_type * memory_ib(struct node *n, struct memory_type *parent);
struct memory_type * memory_managed(void *ptr, size_t len);
#ifdef __cplusplus
}
#endif

View file

@ -160,6 +160,8 @@ int node_write(struct node *n, struct sample *smps[], unsigned cnt);
int node_fd(struct node *n);
struct memory_type * node_memory_type(struct node *n, struct memory_type *parent);
#ifdef __cplusplus
}
#endif

View file

@ -34,6 +34,7 @@ extern "C"{
#include "list.h"
#include "common.h"
#include "memory.h"
/* Forward declarations */
struct node;
@ -161,6 +162,9 @@ struct node_type {
/** Return a file descriptor which can be used by poll / select to detect the availability of new data. */
int (*fd)(struct node *n);
/** */
struct memory_type * (*memory_type)(struct node *n, struct memory_type *parent);
};
/** Initialize all registered node type subsystems.

View file

@ -0,0 +1,144 @@
/** Node type: infiniband
*
* @file
* @author Dennis Potter <dennis@dennispotter.eu>
* @copyright 2018, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
/**
* @addtogroup infiniband infiniband node type
* @ingroup node
* @{
*/
#pragma once
#include <villas/node.h>
#include <villas/pool.h>
#include <villas/io.h>
#include <villas/queue_signalled.h>
#include <rdma/rdma_cma.h>
/* Function poitner typedefs */
typedef void (*ib_on_completion)(struct node*, struct ibv_wc*, int*);
typedef void* (*ib_poll_function)(void*);
/* Enums */
enum poll_mode_e
{
EVENT,
BUSY
};
struct r_addr_key_s {
uint64_t remote_addr;
uint32_t rkey;
};
struct infiniband {
/* IBV/RDMA CM structs */
struct context_s {
struct rdma_cm_id *listen_id;
struct rdma_cm_id *id;
struct rdma_event_channel *ec;
struct ibv_pd *pd;
struct ibv_cq *recv_cq;
struct ibv_cq *send_cq;
struct ibv_comp_channel *comp_channel;
} ctx;
/* Work Completion related */
struct poll_s {
enum poll_mode_e poll_mode;
/* On completion function */
ib_on_completion on_compl;
/* Busy poll or Event function */
ib_poll_function poll_func;
/* Poll thread */
pthread_t cq_poller_thread;
int stopThread;
} poll;
/* Connection specific variables */
struct connection_s {
struct addrinfo *src_addr;
struct addrinfo *dst_addr;
enum rdma_port_space port_space;
int timeout;
struct r_addr_key_s *r_addr_key;
pthread_t stop_thread;
int rdma_disconnect_called;
int available_recv_wrs;
} conn;
/* Memory related variables */
struct ib_memory {
struct pool p_recv;
struct pool p_send;
struct ibv_mr *mr_recv;
struct ibv_mr *mr_send;
} mem;
/* Queue Pair init variables */
struct ibv_qp_init_attr qp_init;
/* Misc settings */
int is_source;
int cq_size;
};
/** @see node_type::reverse */
int infiniband_reverse(struct node *n);
/** @see node_type::print */
char * infiniband_print(struct node *n);
/** @see node_type::parse */
int infiniband_parse(struct node *n, json_t *cfg);
/** @see node_type::open */
int infiniband_start(struct node *n);
/** @see node_type::destroy */
int infiniband_destroy(struct node *n);
/** @see node_type::close */
int infiniband_stop(struct node *n);
/** @see node_type::init */
int infiniband_init(struct super_node *n);
/** @see node_type::deinit */
int infiniband_deinit();
/** @see node_type::read */
int infiniband_read(struct node *n, struct sample *smps[], unsigned cnt);
/** @see node_type::write */
int infiniband_write(struct node *n, struct sample *smps[], unsigned cnt);
/** @} */

View file

@ -41,10 +41,8 @@ struct pool {
enum state state;
off_t buffer_off; /**< Offset from the struct address to the underlying memory area */
struct memtype *mem;
size_t len; /**< Length of the underlying memory area */
size_t blocksz; /**< Length of a block in bytes */
size_t alignment; /**< Alignment of a block in bytes */
@ -62,7 +60,7 @@ struct pool {
* @retval 0 The pool has been successfully initialized.
* @retval <>0 There was an error during the pool initialization.
*/
int pool_init(struct pool *p, size_t cnt, size_t blocksz, struct memtype *mem);
int pool_init(struct pool *p, size_t cnt, size_t blocksz, struct memory_type *mem);
/** Destroy and release memory used by pool. */
int pool_destroy(struct pool *p);

View file

@ -45,7 +45,7 @@ extern "C"{
#endif
/* Forward declarations */
struct memtype;
struct memory_type;
#define CACHELINE_SIZE 64
typedef char cacheline_pad_t[CACHELINE_SIZE];
@ -61,7 +61,6 @@ struct queue {
atomic_state state;
struct memtype *mem;
size_t buffer_mask;
off_t buffer_off; /**< Relative pointer to struct queue_cell[] */
@ -77,7 +76,7 @@ struct queue {
};
/** Initialize MPMC queue */
int queue_init(struct queue *q, size_t size, struct memtype *mem);
int queue_init(struct queue *q, size_t size, struct memory_type *mem);
/** Desroy MPMC queue and release memory */
int queue_destroy(struct queue *q);

View file

@ -68,7 +68,7 @@ struct queue_signalled {
#define queue_signalled_available(q) queue_available(&((q)->queue))
int queue_signalled_init(struct queue_signalled *qs, size_t size, struct memtype *mem, int flags);
int queue_signalled_init(struct queue_signalled *qs, size_t size, struct memory_type *mem, int flags);
int queue_signalled_destroy(struct queue_signalled *qs);

View file

@ -272,7 +272,8 @@ int api_init(struct api *a, struct super_node *sn)
if (ret)
return ret;
ret = queue_signalled_init(&a->pending, 1024, &memtype_heap, 0);
memory_init(0);
ret = queue_signalled_init(&a->pending, 1024, &memory_type_heap, 0);
if (ret)
return ret;

View file

@ -40,11 +40,11 @@ int api_session_init(struct api_session *s, enum api_mode m)
if (ret)
return ret;
ret = queue_init(&s->request.queue, 128, &memtype_heap);
ret = queue_init(&s->request.queue, 128, &memory_type_heap);
if (ret)
return ret;
ret = queue_init(&s->response.queue, 128, &memtype_heap);
ret = queue_init(&s->response.queue, 128, &memory_type_heap);
if (ret)
return ret;

View file

@ -86,6 +86,7 @@ static const char *facilities_strs[] = {
"ngsi", /* LOG_NGSI */
"websocket", /* LOG_WEBSOCKET */
"opal", /* LOG_OPAL */
"ib", /* LOG_IB */
};
#ifdef __GNUC__

View file

@ -25,28 +25,32 @@
#include <errno.h>
#include <strings.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
/* Required to allocate hugepages on Apple OS X */
#ifdef __MACH__
#include <mach/vm_statistics.h>
#elif defined(__linux__)
#include <villas/kernel/kernel.h>
#endif
#include <villas/log.h>
#include <villas/memory.h>
#include <villas/utils.h>
#include <villas/hash_table.h>
#include <villas/kernel/kernel.h>
static struct hash_table allocations = { .state = STATE_DESTROYED };
int memory_init(int hugepages)
{
int ret;
info("Initialize memory sub-system");
if (allocations.state == STATE_DESTROYED) {
ret = hash_table_init(&allocations, 100);
if (ret)
return ret;
}
#ifdef __linux__
int ret, pagecnt, pagesz;
int pagecnt, pagesz;
struct rlimit l;
pagecnt = kernel_get_nr_hugepages();
@ -99,256 +103,47 @@ int memory_init(int hugepages)
return 0;
}
void * memory_alloc(struct memtype *m, size_t len)
void * memory_alloc(struct memory_type *m, size_t len)
{
void *ptr = m->alloc(m, len, sizeof(void *));
debug(LOG_MEM | 5, "Allocated %#zx bytes of %s memory: %p", len, m->name, ptr);
return ptr;
return memory_alloc_aligned(m, len, sizeof(void *));
}
void * memory_alloc_aligned(struct memtype *m, size_t len, size_t alignment)
void * memory_alloc_aligned(struct memory_type *m, size_t len, size_t alignment)
{
void *ptr = m->alloc(m, len, alignment);
struct memory_allocation *ma = m->alloc(m, len, alignment);
debug(LOG_MEM | 5, "Allocated %#zx bytes of %#zx-byte-aligned %s memory: %p", len, alignment, m->name, ptr);
hash_table_insert(&allocations, ma->address, ma);
return ptr;
debug(LOG_MEM | 5, "Allocated %#zx bytes of %#zx-byte-aligned %s memory: %p", ma->length, ma->alignment, ma->type->name, ma->address);
return ma->address;
}
int memory_free(struct memtype *m, void *ptr, size_t len)
int memory_free(void *ptr)
{
debug(LOG_MEM | 5, "Releasing %#zx bytes of %s memory", len, m->name);
return m->free(m, ptr, len);
}
static void * memory_heap_alloc(struct memtype *m, size_t len, size_t alignment)
{
void *ptr;
int ret;
if (alignment < sizeof(void *))
alignment = sizeof(void *);
/* Find corresponding memory allocation entry */
struct memory_allocation *ma = (struct memory_allocation *) hash_table_lookup(&allocations, ptr);
if (!ma)
return -1;
ret = posix_memalign(&ptr, alignment, len);
debug(LOG_MEM | 5, "Releasing %#zx bytes of %s memory", ma->length, ma->type->name);
return ret ? NULL : ptr;
}
ret = ma->type->free(ma->type, ma);
if (ret)
return ret;
int memory_heap_free(struct memtype *m, void *ptr, size_t len)
{
free(ptr);
/* Remove allocation entry */
ret = hash_table_delete(&allocations, ma->address);
if (ret)
return ret;
return 0;
}
/** Allocate memory backed by hugepages with malloc() like interface */
static void * memory_hugepage_alloc(struct memtype *m, size_t len, size_t alignment)
struct memory_allocation * memory_get_allocation(void *ptr)
{
void *ret;
int prot = PROT_READ | PROT_WRITE;
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
#ifdef __MACH__
flags |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
#elif defined(__linux__)
flags |= MAP_HUGETLB;
if (getuid() == 0)
flags |= MAP_LOCKED;
#endif
ret = mmap(NULL, len, prot, flags, -1, 0);
if (ret == MAP_FAILED)
return NULL;
return ret;
struct memory_allocation *ma = (struct memory_allocation *) hash_table_lookup(&allocations, ptr);
return ma;
}
static int memory_hugepage_free(struct memtype *m, void *ptr, size_t len)
{
/** We must make sure that len is a multiple of the hugepage size
*
* See: https://lkml.org/lkml/2014/10/22/925
*/
len = ALIGN(len, HUGEPAGESIZE);
return munmap(ptr, len);
}
void* memory_managed_alloc(struct memtype *m, size_t len, size_t alignment)
{
/* Simple first-fit allocation */
struct memblock *first = (struct memblock *) m->_vd;
struct memblock *block;
for (block = first; block != NULL; block = block->next) {
if (block->flags & MEMBLOCK_USED)
continue;
char* cptr = (char *) block + sizeof(struct memblock);
size_t avail = block->len;
uintptr_t uptr = (uintptr_t) cptr;
/* Check alignment first; leave a gap at start of block to assure
* alignment if necessary */
uintptr_t rem = uptr % alignment;
uintptr_t gap = 0;
if (rem != 0) {
gap = alignment - rem;
if (gap > avail)
continue; /* Next aligned address isn't in this block anymore */
cptr += gap;
avail -= gap;
}
if (avail >= len) {
if (gap > sizeof(struct memblock)) {
/* The alignment gap is big enough to fit another block.
* The original block descriptor is already at the correct
* position, so we just change its len and create a new block
* descriptor for the actual block we're handling. */
block->len = gap - sizeof(struct memblock);
struct memblock *newblock = (struct memblock *) (cptr - sizeof(struct memblock));
newblock->prev = block;
newblock->next = block->next;
block->next = newblock;
newblock->flags = 0;
newblock->len = len;
block = newblock;
}
else {
/* The gap is too small to fit another block descriptor, so we
* must account for the gap length in the block length. */
block->len = len + gap;
}
if (avail > len + sizeof(struct memblock)) {
/* Imperfect fit, so create another block for the remaining part */
struct memblock *newblock = (struct memblock *) (cptr + len);
newblock->prev = block;
newblock->next = block->next;
block->next = newblock;
if (newblock->next)
newblock->next->prev = newblock;
newblock->flags = 0;
newblock->len = avail - len - sizeof(struct memblock);
}
else {
/* If this block was larger than the requested length, but only
* by less than sizeof(struct memblock), we may have wasted
* memory by previous assignments to block->len. */
block->len = avail;
}
block->flags |= MEMBLOCK_USED;
return (void *) cptr;
}
}
/* No suitable block found */
return NULL;
}
int memory_managed_free(struct memtype *m, void *ptr, size_t len)
{
struct memblock *first = (struct memblock *) m->_vd;
struct memblock *block;
char *cptr = ptr;
for (block = first; block != NULL; block = block->next) {
if (!(block->flags & MEMBLOCK_USED))
continue;
/* Since we may waste some memory at the start of a block to ensure
* alignment, ptr may not actually be the start of the block */
if ((char *) block + sizeof(struct memblock) <= cptr &&
cptr < (char *) block + sizeof(struct memblock) + block->len) {
/* Try to merge it with neighbouring free blocks */
if (block->prev && !(block->prev->flags & MEMBLOCK_USED) &&
block->next && !(block->next->flags & MEMBLOCK_USED)) {
/* Special case first: both previous and next block are unused */
block->prev->len += block->len + block->next->len + 2 * sizeof(struct memblock);
block->prev->next = block->next->next;
if (block->next->next)
block->next->next->prev = block->prev;
}
else if (block->prev && !(block->prev->flags & MEMBLOCK_USED)) {
block->prev->len += block->len + sizeof(struct memblock);
block->prev->next = block->next;
if (block->next)
block->next->prev = block->prev;
}
else if (block->next && !(block->next->flags & MEMBLOCK_USED)) {
block->len += block->next->len + sizeof(struct memblock);
block->next = block->next->next;
if (block->next)
block->next->prev = block;
}
else {
/* no neighbouring free block, so just mark it as free */
block->flags &= ~MEMBLOCK_USED;
}
return 0;
}
}
return -1;
}
struct memtype * memtype_managed_init(void *ptr, size_t len)
{
struct memtype *mt = ptr;
struct memblock *mb;
char *cptr = ptr;
if (len < sizeof(struct memtype) + sizeof(struct memblock)) {
info("memtype_managed_init: passed region too small");
return NULL;
}
/* Initialize memtype */
mt->name = "managed";
mt->flags = 0;
mt->alloc = memory_managed_alloc;
mt->free = memory_managed_free;
mt->alignment = 1;
cptr += ALIGN(sizeof(struct memtype), sizeof(void *));
/* Initialize first free memblock */
mb = (struct memblock *) cptr;
mb->prev = NULL;
mb->next = NULL;
mb->flags = 0;
cptr += ALIGN(sizeof(struct memblock), sizeof(void *));
mb->len = len - (cptr - (char *) ptr);
mt->_vd = (void *) mb;
return mt;
}
/* List of available memory types */
struct memtype memtype_heap = {
.name = "heap",
.flags = MEMORY_HEAP,
.alloc = memory_heap_alloc,
.free = memory_heap_free,
.alignment = 1
};
struct memtype memtype_hugepage = {
.name = "mmap_hugepages",
.flags = MEMORY_MMAP | MEMORY_HUGEPAGE,
.alloc = memory_hugepage_alloc,
.free = memory_hugepage_free,
.alignment = 21 /* 2 MiB hugepage */
};

67
lib/memory/heap.c Normal file
View file

@ -0,0 +1,67 @@
/** Memory allocators.
*
* @author Steffen Vogel <stvogel@eonerc.rwth-aachen.de>
* @copyright 2017, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <stdlib.h>
#include <villas/utils.h>
#include <villas/memory.h>
static struct memory_allocation * memory_heap_alloc(struct memory_type *m, size_t len, size_t alignment)
{
int ret;
struct memory_allocation *ma = alloc(sizeof(struct memory_allocation));
if (!ma)
return NULL;
ma->alignment = alignment;
ma->type = m;
ma->length = len;
if (ma->alignment < sizeof(void *))
ma->alignment = sizeof(void *);
ret = posix_memalign(&ma->address, ma->alignment, ma->length);
if (ret) {
free(ma);
return NULL;
}
return ma;
}
static int memory_heap_free(struct memory_type *m, struct memory_allocation *ma)
{
free(ma->address);
free(ma);
return 0;
}
/* List of available memory types */
struct memory_type memory_type_heap = {
.name = "heap",
.flags = MEMORY_HEAP,
.alloc = memory_heap_alloc,
.free = memory_heap_free,
.alignment = 1
};

101
lib/memory/hugepage.c Normal file
View file

@ -0,0 +1,101 @@
/** Hugepage memory allocator.
*
* @author Steffen Vogel <stvogel@eonerc.rwth-aachen.de>
* @copyright 2017, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <strings.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
/* Required to allocate hugepages on Apple OS X */
#ifdef __MACH__
#include <mach/vm_statistics.h>
#elif defined(__linux__)
#include <villas/kernel/kernel.h>
#endif
#include <villas/log.h>
#include <villas/memory.h>
#include <villas/utils.h>
#define HUGEPAGESIZE (1 << 22) /* 2 MiB */
/** Allocate memory backed by hugepages with malloc() like interface */
static struct memory_allocation * memory_hugepage_alloc(struct memory_type *m, size_t len, size_t alignment)
{
int prot = PROT_READ | PROT_WRITE;
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
#ifdef __MACH__
flags |= VM_FLAGS_SUPERPAGE_SIZE_2MB;
#elif defined(__linux__)
flags |= MAP_HUGETLB;
if (getuid() == 0)
flags |= MAP_LOCKED;
#endif
struct memory_allocation *ma = alloc(sizeof(struct memory_allocation));
if (!ma)
return NULL;
/** We must make sure that len is a multiple of the hugepage size
*
* See: https://lkml.org/lkml/2014/10/22/925
*/
ma->length = ALIGN(len, HUGEPAGESIZE);
ma->alignment = alignment;
ma->type = m;
ma->address = mmap(NULL, len, prot, flags, -1, 0);
if (ma->address == MAP_FAILED) {
free(ma);
return NULL;
}
return ma;
}
static int memory_hugepage_free(struct memory_type *m, struct memory_allocation *ma)
{
int ret;
ret = munmap(ma->address, ma->length);
if (ret)
return ret;
free(ma);
return 0;
}
struct memory_type memory_hugepage = {
.name = "mmap_hugepages",
.flags = MEMORY_MMAP | MEMORY_HUGEPAGE,
.alloc = memory_hugepage_alloc,
.free = memory_hugepage_free,
.alignment = 21 /* 2 MiB hugepage */
};

103
lib/memory/ib.c Normal file
View file

@ -0,0 +1,103 @@
/** Memory allocators.
*
* @author Steffen Vogel <stvogel@eonerc.rwth-aachen.de>
* @copyright 2017, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <villas/nodes/infiniband.h>
#include <villas/memory.h>
#include <villas/utils.h>
#include <rdma/rdma_cma.h>
#include <villas/memory/ib.h>
struct ibv_mr * memory_ib_get_mr(struct sample *smps)
{
struct memory_allocation *ma;
struct pool *p;
struct ibv_mr *mr;
p = sample_pool(smps);
ma = memory_get_allocation((char *)(p)+p->buffer_off);
mr = ma->ib.mr;
return mr;
}
static struct memory_allocation * memory_ib_alloc(struct memory_type *m, size_t len, size_t alignment)
{
struct memory_ib *mi = (struct memory_ib *) m->_vd;
struct memory_allocation *ma = alloc(sizeof(struct memory_allocation));
if (!ma)
return NULL;
ma->type = m;
ma->length = len;
ma->alignment = alignment;
ma->parent = mi->parent->alloc(mi->parent, len + sizeof(struct ibv_mr *), alignment);
ma->address = ma->parent->address;
ma->ib.mr = ibv_reg_mr(mi->pd, ma->address, ma->length, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
if(!ma->ib.mr) {
mi->parent->free(mi->parent, ma->parent);
free(ma);
return NULL;
}
return ma;
}
static int memory_ib_free(struct memory_type *m, struct memory_allocation *ma)
{
int ret;
struct memory_ib *mi = (struct memory_ib *) m->_vd;
ibv_dereg_mr(ma->ib.mr);
ret = mi->parent->free(mi->parent, ma->parent);
if (ret)
return ret;
free(ma);
return 0;
}
struct memory_type * memory_ib(struct node *n, struct memory_type *parent)
{
struct infiniband *i = (struct infiniband *) n->_vd;
struct memory_type *mt = malloc(sizeof(struct memory_type));
mt->name = "ib";
mt->flags = 0;
mt->alloc = memory_ib_alloc;
mt->free = memory_ib_free;
mt->alignment = 1;
mt->_vd = malloc(sizeof(struct memory_ib));
struct memory_ib *mi = (struct memory_ib *) mt->_vd;
mi->pd = i->ctx.pd;
mi->parent = parent;
return mt;
}

193
lib/memory/managed.c Normal file
View file

@ -0,0 +1,193 @@
/** Memory allocators.
*
* @author Steffen Vogel <stvogel@eonerc.rwth-aachen.de>
* @copyright 2017, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <strings.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <villas/log.h>
#include <villas/memory.h>
#include <villas/utils.h>
static struct memory_allocation * memory_managed_alloc(struct memory_type *m, size_t len, size_t alignment)
{
/* Simple first-fit allocation */
struct memory_block *first = (struct memory_block *) m->_vd;
struct memory_block *block;
for (block = first; block != NULL; block = block->next) {
if (block->used)
continue;
char* cptr = (char *) block + sizeof(struct memory_block);
size_t avail = block->length;
uintptr_t uptr = (uintptr_t) cptr;
/* Check alignment first; leave a gap at start of block to assure
* alignment if necessary */
uintptr_t rem = uptr % alignment;
uintptr_t gap = 0;
if (rem != 0) {
gap = alignment - rem;
if (gap > avail)
continue; /* Next aligned address isn't in this block anymore */
cptr += gap;
avail -= gap;
}
if (avail >= len) {
if (gap > sizeof(struct memory_block)) {
/* The alignment gap is big enough to fit another block.
* The original block descriptor is already at the correct
* position, so we just change its len and create a new block
* descriptor for the actual block we're handling. */
block->length = gap - sizeof(struct memory_block);
struct memory_block *newblock = (struct memory_block *) (cptr - sizeof(struct memory_block));
newblock->prev = block;
newblock->next = block->next;
block->next = newblock;
newblock->used = false;
newblock->length = len;
block = newblock;
}
else {
/* The gap is too small to fit another block descriptor, so we
* must account for the gap length in the block length. */
block->length = len + gap;
}
if (avail > len + sizeof(struct memory_block)) {
/* Imperfect fit, so create another block for the remaining part */
struct memory_block *newblock = (struct memory_block *) (cptr + len);
newblock->prev = block;
newblock->next = block->next;
block->next = newblock;
if (newblock->next)
newblock->next->prev = newblock;
newblock->used = false;
newblock->length = avail - len - sizeof(struct memory_block);
}
else {
/* If this block was larger than the requested length, but only
* by less than sizeof(struct memory_block), we may have wasted
* memory by previous assignments to block->length. */
block->length = avail;
}
block->used = true;
struct memory_allocation *ma = alloc(sizeof(struct memory_allocation));
if (!ma)
return NULL;
ma->address = cptr;
ma->type = m;
ma->alignment = alignment;
ma->length = len;
ma->managed.block = block;
return ma;
}
}
/* No suitable block found */
return NULL;
}
static int memory_managed_free(struct memory_type *m, struct memory_allocation *ma)
{
struct memory_block *block = ma->managed.block;
/* Try to merge it with neighbouring free blocks */
if (block->prev && !block->prev->used &&
block->next && !block->next->used) {
/* Special case first: both previous and next block are unused */
block->prev->length += block->length + block->next->length + 2 * sizeof(struct memory_block);
block->prev->next = block->next->next;
if (block->next->next)
block->next->next->prev = block->prev;
}
else if (block->prev && !block->prev->used) {
block->prev->length += block->length + sizeof(struct memory_block);
block->prev->next = block->next;
if (block->next)
block->next->prev = block->prev;
}
else if (block->next && !block->next->used) {
block->length += block->next->length + sizeof(struct memory_block);
block->next = block->next->next;
if (block->next)
block->next->prev = block;
}
else {
/* no neighbouring free block, so just mark it as free */
block->used = false;
}
free(ma);
return 0;
}
struct memory_type * memory_managed(void *ptr, size_t len)
{
struct memory_type *mt = ptr;
struct memory_block *mb;
char *cptr = ptr;
if (len < sizeof(struct memory_type) + sizeof(struct memory_block)) {
info("memory_managed: passed region too small");
return NULL;
}
/* Initialize memory_type */
mt->name = "managed";
mt->flags = 0;
mt->alloc = memory_managed_alloc;
mt->free = memory_managed_free;
mt->alignment = 1;
cptr += ALIGN(sizeof(struct memory_type), sizeof(void *));
/* Initialize first free memory block */
mb = (struct memory_block *) cptr;
mb->prev = NULL;
mb->next = NULL;
mb->used = false;
cptr += ALIGN(sizeof(struct memory_block), sizeof(void *));
mb->length = len - (cptr - (char *) ptr);
mt->_vd = (void *) mb;
return mt;
}

View file

@ -32,6 +32,7 @@
#include <villas/mapping.h>
#include <villas/timing.h>
#include <villas/signal.h>
#include <villas/memory.h>
static int node_direction_init(struct node_direction *nd, struct node *n)
{
@ -549,6 +550,11 @@ int node_fd(struct node *n)
return n->_vt->fd ? n->_vt->fd(n) : -1;
}
struct memory_type * node_memory_type(struct node *n, struct memory_type *parent)
{
return n->_vt->memory_type ? n->_vt->memory_type(n, parent) : &memory_hugepage;
}
int node_parse_list(struct list *list, json_t *cfg, struct list *all)
{
struct node *node;

View file

@ -299,11 +299,11 @@ int iec61850_sv_start(struct node *n)
SVReceiver_addSubscriber(i->subscriber.receiver, i->subscriber.subscriber);
/* Initialize pool and queue to pass samples between threads */
ret = pool_init(&i->subscriber.pool, 1024, SAMPLE_LEN(n->samplelen), &memtype_hugepage);
ret = pool_init(&i->subscriber.pool, 1024, SAMPLE_LEN(n->samplelen), &memory_hugepage);
if (ret)
return ret;
ret = queue_signalled_init(&i->subscriber.queue, 1024, &memtype_hugepage, 0);
ret = queue_signalled_init(&i->subscriber.queue, 1024, &memory_hugepage, 0);
if (ret)
return ret;
}

856
lib/nodes/infiniband.c Normal file
View file

@ -0,0 +1,856 @@
/** Node type: infiniband
*
* @author Dennis Potter <dennis@dennispotter.eu>
* @copyright 2018, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <string.h>
#include <math.h>
#include <villas/nodes/infiniband.h>
#include <villas/plugin.h>
#include <villas/utils.h>
#include <villas/format_type.h>
#include <villas/memory.h>
#include <villas/pool.h>
#include <villas/memory.h>
#include <villas/memory/ib.h>
#include <rdma/rdma_cma.h>
int ib_cleanup(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
info("Starting to clean up");
// Destroy QP
rdma_destroy_qp(ib->ctx.id);
info("Destroyed QP");
// Deregister memory regions
ibv_dereg_mr(ib->mem.mr_recv);
if(ib->is_source)
ibv_dereg_mr(ib->mem.mr_send);
info("Deregistered memory regions");
// Destroy pools
pool_destroy(&ib->mem.p_recv);
pool_destroy(&ib->mem.p_send);
info("Destroyed memory pools");
// Destroy RDMA CM ID
rdma_destroy_id(ib->ctx.id);
info("Destroyed rdma_cm_id");
// Destroy event channel
rdma_destroy_event_channel(ib->ctx.ec);
info("Destroyed event channel");
return 0;
}
int ib_post_recv_wrs(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_recv_wr wr, *bad_wr = NULL;
int ret;
struct ibv_sge sge;
// Prepare receive Scatter/Gather element
sge.addr = (uintptr_t)pool_get(&ib->mem.p_recv);
sge.length = ib->mem.p_recv.blocksz;
sge.lkey = ib->mem.mr_recv->lkey;
// Prepare a receive Work Request
wr.wr_id = (uintptr_t)sge.addr;
wr.next = NULL;
wr.sg_list = &sge;
wr.num_sge = 1;
// Post Work Request
ret = ibv_post_recv(ib->ctx.id->qp, &wr, &bad_wr);
return ret;
}
void ib_completion_target(struct node* n, struct ibv_wc* wc, int* size){}
void ib_completion_source(struct node* n, struct ibv_wc* wc, int* size)
{
struct infiniband *ib = (struct infiniband *)((struct node *)n)->_vd;
for(int i=0; i<*size; i++)
{
//On disconnect, the QP set to error state and will be flushed
if(wc[i].status == IBV_WC_WR_FLUSH_ERR)
{
ib->poll.stopThread = 1;
return;
}
if(wc[i].status != IBV_WC_SUCCESS)
{
warn("Work Completion status was not IBV_WC_SUCCES in node %s: %i",
node_name(n), wc[i].status);
}
sample_put((struct sample*)(wc[i].wr_id));
}
}
void * ib_event_thread(void *n)
{
struct infiniband *ib = (struct infiniband *)((struct node *)n)->_vd;
struct ibv_wc wc[ib->cq_size];
int size;
while(1)
{
// Function blocks, until an event occurs
ibv_get_cq_event(ib->ctx.comp_channel, &ib->ctx.send_cq, NULL);
// Poll as long as WCs are available
while((size = ibv_poll_cq(ib->ctx.send_cq, ib->cq_size, wc)))
ib->poll.on_compl(n, wc, &size);
// Request a new event in the CQ and acknowledge event
ibv_req_notify_cq(ib->ctx.send_cq, 0);
ibv_ack_cq_events(ib->ctx.send_cq, 1);
}
}
void * ib_busy_poll_thread(void *n)
{
struct infiniband *ib = (struct infiniband *)((struct node *)n)->_vd;
struct ibv_wc wc[ib->cq_size];
int size;
while(1)
{
// Poll as long as WCs are available
while((size = ibv_poll_cq(ib->ctx.send_cq, ib->cq_size, wc)))
ib->poll.on_compl(n, wc, &size);
if(ib->poll.stopThread)
return NULL;
}
}
static void ib_init_wc_poll(struct node *n)
{
int ret;
struct infiniband *ib = (struct infiniband *) n->_vd;
ib->ctx.comp_channel = NULL;
if(ib->poll.poll_mode == EVENT)
{
// Create completion channel
ib->ctx.comp_channel = ibv_create_comp_channel(ib->ctx.id->verbs);
if(!ib->ctx.comp_channel)
error("Could not create completion channel in node %s.", node_name(n));
}
// Create completion queues and bind to channel (or NULL)
ib->ctx.recv_cq = ibv_create_cq(ib->ctx.id->verbs,
ib->cq_size,
NULL,
NULL,
0);
if(!ib->ctx.recv_cq)
error("Could not create receive completion queue in node %s.", node_name(n));
ib->ctx.send_cq = ibv_create_cq(ib->ctx.id->verbs,
ib->cq_size,
NULL,
ib->ctx.comp_channel,
0);
if(!ib->ctx.send_cq)
error("Could not create send completion queue in node %s.", node_name(n));
if(ib->poll.poll_mode == EVENT)
{
// Request notifications from completion queue
ret = ibv_req_notify_cq(ib->ctx.send_cq, 0);
if(ret)
error("Failed to request notifiy CQ in node %s: %s",
node_name(n), gai_strerror(ret));
}
// Initialize polling pthread for source
if(ib->is_source)
{
ret = pthread_create(&ib->poll.cq_poller_thread, NULL, ib->poll.poll_func, n);
if(ret)
{
error("Failed to create poll thread of node %s: %s",
node_name(n), gai_strerror(ret));
}
}
}
static void ib_build_ibv(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
//Allocate protection domain
ib->ctx.pd = ibv_alloc_pd(ib->ctx.id->verbs);
if(!ib->ctx.pd)
error("Could not allocate protection domain in node %s.", node_name(n));
info("Allocated Protection Domain");
// Initiate poll mode
ib_init_wc_poll(n);
// Prepare remaining Queue Pair (QP) attributes
ib->qp_init.send_cq = ib->ctx.send_cq;
ib->qp_init.recv_cq = ib->ctx.recv_cq;
//ToDo: Set maximum inline data
// Create the actual QP
ret = rdma_create_qp(ib->ctx.id, ib->ctx.pd, &ib->qp_init);
if(ret)
error("Failed to create Queue Pair in node %s.", node_name(n));
info("Created Queue Pair with %i receive and %i send elements.",
ib->qp_init.cap.max_recv_wr, ib->qp_init.cap.max_send_wr);
// Allocate memory
ib->mem.p_recv.state = STATE_DESTROYED;
ib->mem.p_recv.queue.state = STATE_DESTROYED;
// Set pool size to maximum size of Receive Queue
pool_init(&ib->mem.p_recv,
ib->qp_init.cap.max_recv_wr,
SAMPLE_DATA_LEN(DEFAULT_SAMPLELEN),
&memory_type_heap);
if(ret)
{
error("Failed to init recv memory pool of node %s: %s",
node_name(n), gai_strerror(ret));
}
//ToDo: initialize r_addr_key struct if mode is RDMA
// Register memory for IB Device. Not necessary if data is send
// exclusively inline
ib->mem.mr_recv = ibv_reg_mr(
ib->ctx.pd,
(char*)&ib->mem.p_recv+ib->mem.p_recv.buffer_off,
ib->mem.p_recv.len,
IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
if(!ib->mem.mr_recv) {
error("Failed to register mr_recv with ibv_reg_mr of node %s.",
node_name(n));
}
info("Allocated receive memory.");
if(ib->is_source)
{
ib->mem.p_send.state = STATE_DESTROYED;
ib->mem.p_send.queue.state = STATE_DESTROYED;
// Set pool size to maximum size of Receive Queue
pool_init(&ib->mem.p_send,
ib->qp_init.cap.max_send_wr,
sizeof(double),
&memory_type_heap);
if(ret)
{
error("Failed to init send memory of node %s: %s",
node_name(n), gai_strerror(ret));
}
//ToDo: initialize r_addr_key struct if mode is RDMA
// Register memory for IB Device. Not necessary if data is send
// exclusively inline
ib->mem.mr_send = ibv_reg_mr(
ib->ctx.pd,
(char*)&ib->mem.p_send+ib->mem.p_send.buffer_off,
ib->mem.p_send.len,
IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
if(!ib->mem.mr_send) {
error("Failed to register mr_send with ibv_reg_mr of node %s.",
node_name(n));
}
info("Allocated send memory.");
}
}
static int ib_addr_resolved(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
info("Successfully resolved address.");
// Build all components from IB Verbs
ib_build_ibv(n);
// Resolve address
ret = rdma_resolve_route(ib->ctx.id, ib->conn.timeout);
if(ret)
error("Failed to resolve route in node %s.", node_name(n));
return 0;
}
static int ib_route_resolved(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
info("Successfully resolved route.");
struct rdma_conn_param cm_params;
memset(&cm_params, 0, sizeof(cm_params));
// Send connection request
ret = rdma_connect(ib->ctx.id, &cm_params);
if(ret)
error("Failed to connect in node %s.", node_name(n));
info("Called rdma_connect.");
return 0;
}
static int ib_connect_request(struct node *n, struct rdma_cm_id *id)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
info("Received a connection request!");
ib->ctx.id = id;
ib_build_ibv(n);
struct rdma_conn_param cm_params;
memset(&cm_params, 0, sizeof(cm_params));
// Accept connection request
ret = rdma_accept(ib->ctx.id, &cm_params);
if(ret)
error("Failed to connect in node %s.", node_name(n));
info("Successfully accepted connection request.");
return 0;
}
static int ib_event(struct node *n, struct rdma_cm_event *event)
{
int ret = 0;
switch(event->event)
{
case RDMA_CM_EVENT_ADDR_RESOLVED:
ret = ib_addr_resolved(n);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
error("Address resolution (rdma_resolve_addr) failed!");
case RDMA_CM_EVENT_ROUTE_RESOLVED:
ret = ib_route_resolved(n);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
error("Route resolution (rdma_resovle_route) failed!");
case RDMA_CM_EVENT_CONNECT_REQUEST:
ret = ib_connect_request(n, event->id);
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
error("An error has occurred trying to establish a connection!");
case RDMA_CM_EVENT_REJECTED:
error("Connection request or response was rejected by the remote end point!");
case RDMA_CM_EVENT_ESTABLISHED:
info("Connection established!");
ret = 1;
break;
case RDMA_CM_EVENT_DISCONNECTED:
ret = ib_cleanup(n);
break;
default:
error("Unknown event occurred: %u",
event->event);
}
return ret;
}
int ib_reverse(struct node *n)
{
return 0;
}
int ib_parse(struct node *n, json_t *cfg)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
char *local = NULL;
char *remote = NULL;
const char *port_space = "RDMA_PC_TCP";
const char *poll_mode = "BUSY";
const char *qp_type = "IBV_QPT_RC";
int timeout = 1000;
int cq_size = 128;
int max_send_wr = 128;
int max_recv_wr = 128;
json_error_t err;
ret = json_unpack_ex(cfg, &err, 0, "{ s?: s, s?: s, s?: s, s?: i, \
s?: s, s?: i, s?: s, s?: i, s?: i}",
"remote", &remote,
"local", &local,
"rdma_port_space", &port_space,
"resolution_timeout", &timeout,
"poll_mode", &poll_mode,
"cq_size", &cq_size,
"qp_type", &qp_type,
"max_send_wr", &max_send_wr,
"max_recv_wr", &max_recv_wr
);
if(ret)
jerror(&err, "Failed to parse configuration of node %s", node_name(n));
// Translate IP:PORT to a struct addrinfo
char* ip_adr = strtok(local, ":");
char* port = strtok(NULL, ":");
ret = getaddrinfo(ip_adr, port, NULL, &ib->conn.src_addr);
if(ret)
{
error("Failed to resolve local address '%s' of node %s: %s",
local, node_name(n), gai_strerror(ret));
}
// Translate port space
if(strcmp(port_space, "RDMA_PS_IPOIB") == 0) ib->conn.port_space = RDMA_PS_IPOIB;
else if(strcmp(port_space, "RDMA_PS_TCP") == 0) ib->conn.port_space = RDMA_PS_TCP;
else if(strcmp(port_space, "RDMA_PS_UDP") == 0) ib->conn.port_space = RDMA_PS_UDP;
else if(strcmp(port_space, "RDMA_PS_IB") == 0) ib->conn.port_space = RDMA_PS_IB;
else {
error("Failed to translate rdma_port_space in node %s. %s is not a valid \
port space supported by rdma_cma.h!", node_name(n), port_space);
}
// Set timeout
ib->conn.timeout = timeout;
n->in.vectorize = 256;
// Translate poll mode
if(strcmp(poll_mode, "EVENT") == 0)
{
ib->poll.poll_mode = EVENT;
ib->poll.poll_func = ib_event_thread;
}
else if(strcmp(poll_mode, "BUSY") == 0)
{
ib->poll.poll_mode = BUSY;
ib->poll.poll_func = ib_busy_poll_thread;
}
else
{
error("Failed to translate poll_mode in node %s. %s is not a valid \
poll mode!", node_name(n), poll_mode);
}
// Set completion queue size
ib->cq_size = cq_size;
// Translate QP type
if(strcmp(qp_type, "IBV_QPT_RC") == 0) ib->qp_init.qp_type = IBV_QPT_RC;
else if(strcmp(qp_type, "IBV_QPT_UC") == 0) ib->qp_init.qp_type = IBV_QPT_UC;
else if(strcmp(qp_type, "IBV_QPT_UD") == 0) ib->qp_init.qp_type = IBV_QPT_UD;
else {
error("Failed to translate qp_type in node %s. %s is not a valid \
qp_type!", node_name(n), qp_type);
}
// Set max. send and receive Work Requests
// First check if the set value is a power of 2, and warn the user if this is not the case
int max_send_pow = (int) pow(2, ceil(log2(max_send_wr)));
int max_recv_pow = (int) pow(2, ceil(log2(max_recv_wr)));
if(max_send_wr != max_send_pow)
warn("Max. number of send WRs (%i) is not a power of 2! The HCA will change this to a power of 2: %i",
max_send_wr, max_send_pow);
if(max_recv_wr != max_recv_pow)
warn("Max. number of recv WRs (%i) is not a power of 2! The HCA will change this to a power of 2: %i",
max_recv_wr, max_recv_pow);
ib->qp_init.cap.max_send_wr = max_send_wr;
ib->qp_init.cap.max_recv_wr = max_recv_wr;
// Set available receive Work Requests to 0
ib->conn.available_recv_wrs = 0;
// Set remaining QP attributes
ib->qp_init.cap.max_send_sge = 1;
ib->qp_init.cap.max_recv_sge = 1;
//Check if node is a source and connect to target
if(remote)
{
ib->is_source = 1;
// Translate address info
char* ip_adr = strtok(remote, ":");
char* port = strtok(NULL, ":");
ret = getaddrinfo(ip_adr, port, NULL, &ib->conn.dst_addr);
if(ret)
{
error("Failed to resolve remote address '%s' of node %s: %s",
remote, node_name(n), gai_strerror(ret));
}
// Set correct Work Completion function
ib->poll.on_compl = ib_completion_source;
}
else
{
ib->is_source = 0;
// Set correct Work Completion function
ib->poll.on_compl = ib_completion_target;
}
return 0;
}
char * ib_print(struct node *n)
{
return 0;
}
int ib_destroy(struct node *n)
{
return 0;
}
void * ib_disconnect_thread(void *n)
{
struct node *node = (struct node *)n;
struct infiniband *ib = (struct infiniband *)((struct node *)n)->_vd;
struct rdma_cm_event *event;
while(rdma_get_cm_event(ib->ctx.ec, &event) == 0)
{
if(event->event == RDMA_CM_EVENT_DISCONNECTED)
{
rdma_ack_cm_event(event);
ib->conn.rdma_disconnect_called = 1;
node_stop(node);
return NULL;
}
}
return NULL;
}
int ib_start(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct rdma_cm_event *event = NULL;
int ret;
// Create event channel
ib->ctx.ec = rdma_create_event_channel();
if(!ib->ctx.ec)
error("Failed to create event channel in node %s!", node_name(n));
ret = rdma_create_id(ib->ctx.ec, &ib->ctx.id, NULL, ib->conn.port_space);
if(ret)
{
error("Failed to create rdma_cm_id of node %s: %s",
node_name(n), gai_strerror(ret));
}
info("Succesfully created rdma_cm_id.");
// Bind rdma_cm_id to the HCA
ret = rdma_bind_addr(ib->ctx.id, ib->conn.src_addr->ai_addr);
if(ret)
{
error("Failed to bind to local device of node %s: %s",
node_name(n), gai_strerror(ret));
}
info("Bound rdma_cm_id to Infiniband device.");
if(ib->is_source)
{
// Resolve address
ret = rdma_resolve_addr(ib->ctx.id,
NULL,
ib->conn.dst_addr->ai_addr,
ib->conn.timeout);
if(ret)
{
error("Failed to resolve remote address after %ims of node %s: %s",
ib->conn.timeout, node_name(n), gai_strerror(ret));
}
}
else
{
// The ID will be overwritten for the target. If the event type is
// RDMA_CM_EVENT_CONNECT_REQUEST, >then this references a new id for
// that communication.
ib->ctx.listen_id = ib->ctx.id;
// Listen on rdma_cm_id for events
ret = rdma_listen(ib->ctx.listen_id, 10);
if(ret)
error("Failed to listen to rdma_cm_id on node %s", node_name(n));
}
// Several events should occur on the event channel, to make
// sure the nodes are succesfully connected.
info("Starting to monitor events on rdma_cm_id.");
while(rdma_get_cm_event(ib->ctx.ec, &event) == 0)
{
struct rdma_cm_event event_copy;
memcpy(&event_copy, event, sizeof(*event));
rdma_ack_cm_event(event);
if(ib_event(n, &event_copy))
break;
}
ret = pthread_create(&ib->conn.stop_thread, NULL, ib_disconnect_thread, n);
if(ret)
{
error("Failed to create thread to monitor disconnects in node %s: %s",
node_name(n), gai_strerror(ret));
}
return 0;
}
int ib_stop(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct rdma_cm_event *event = NULL;
int ret;
// Call RDMA disconnect function
// Will flush all outstanding WRs to the Completion Queue and
// will call RDMA_CM_EVENT_DISCONNECTED if that is done.
ret = rdma_disconnect(ib->ctx.id);
if(ret)
{
error("Error while calling rdma_disconnect in node %s: %s",
node_name(n), gai_strerror(ret));
}
info("Called rdma_disconnect.");
// If disconnected event already occured, directly call cleanup function
if(ib->conn.rdma_disconnect_called)
{
ib_cleanup(n);
}
// Else, wait for event to occur
else
{
ib->conn.rdma_disconnect_called = 1;
rdma_get_cm_event(ib->ctx.ec, &event);
rdma_ack_cm_event(event);
ib_event(n, event);
}
return 0;
}
int ib_init(struct super_node *n)
{
return 0;
}
int ib_deinit()
{
return 0;
}
int ib_read(struct node *n, struct sample *smps[], unsigned cnt)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_wc wc[n->in.vectorize];
struct ibv_recv_wr wr[cnt], *bad_wr = NULL;
struct ibv_sge sge[cnt];
struct ibv_mr * mr;
int ret;
if(ib->conn.available_recv_wrs <= ib->qp_init.cap.max_recv_wr && cnt==n->in.vectorize)
{
// Get Memory Region
mr = memory_ib_get_mr(smps[0]);
for(int i=0; i<cnt; i++)
{
// Increase refcnt of sample
sample_get(smps[i]);
// Prepare receive Scatter/Gather element
sge[i].addr = (uint64_t)&smps[i]->data;
sge[i].length = SAMPLE_DATA_LEN(DEFAULT_SAMPLELEN);
sge[i].lkey = mr->lkey;
// Prepare a receive Work Request
wr[i].wr_id = (uintptr_t)smps[i];
wr[i].next = &wr[i+1];
wr[i].sg_list = &sge[i];
wr[i].num_sge = 1;
ib->conn.available_recv_wrs++;
if(ib->conn.available_recv_wrs == ib->qp_init.cap.max_recv_wr || i==(cnt-1))
{
wr[i].next = NULL;
break;
}
}
// Post list of Work Requests
ret = ibv_post_recv(ib->ctx.id->qp, &wr[0], &bad_wr);
}
// Poll Completion Queue
ret = ibv_poll_cq(ib->ctx.recv_cq, n->in.vectorize, wc);
if(ret)
{
ib->conn.available_recv_wrs -= ret;
for(int i=0; i<ret; i++)
{
if(wc[i].status == IBV_WC_WR_FLUSH_ERR)
{
//ToDo: create debug entry
ret = 0;
}
else if(wc[i].status != IBV_WC_SUCCESS)
{
warn("Work Completion status was not IBV_WC_SUCCES in node %s: %i",
node_name(n), wc[i].status);
ret = 0;
}
else if(wc[i].opcode & IBV_WC_RECV)
{
smps[i] = (struct sample*)(wc[i].wr_id);
smps[i]->length = wc[i].byte_len/sizeof(double);
}
else
ret = 0;
//Release sample
sample_put((struct sample*)(wc[i].wr_id));
}
}
return ret;
}
int ib_write(struct node *n, struct sample *smps[], unsigned cnt)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_send_wr wr[cnt], *bad_wr = NULL;
struct ibv_sge sge[cnt];
struct ibv_mr * mr;
int ret;
memset(&wr, 0, sizeof(wr));
//ToDo: Place this into configuration and create checks if settings are valid
int send_inline = 1;
// Get Memory Region
mr = memory_ib_get_mr(smps[0]);
for(int i=0; i<cnt; i++)
{
// Increase refcnt of sample
sample_get(smps[i]);
//Set Scatter/Gather element to data of sample
sge[i].addr = (uint64_t)&smps[i]->data;
sge[i].length = smps[i]->length*sizeof(double);
sge[i].lkey = mr->lkey;
// Set Send Work Request
wr[i].wr_id = (uintptr_t)smps[i]; //This way the sample can be release in WC
wr[i].sg_list = &sge[i];
wr[i].num_sge = 1;
if(i == (cnt-1))
wr[i].next = NULL;
else
wr[i].next = &wr[i+1];
wr[i].send_flags = IBV_SEND_SIGNALED | (send_inline<<3);
wr[i].imm_data = htonl(0); //ToDo: set this to a useful value
wr[i].opcode = IBV_WR_SEND_WITH_IMM;
}
//Send linked list of Work Requests
ret = ibv_post_send(ib->ctx.id->qp, wr, &bad_wr);
if(ret)
{
error("Failed to send message in node %s: %s",
node_name(n), gai_strerror(ret));
return -ret;
}
return cnt;
}
int ib_fd(struct node *n)
{
return 0;
}
static struct plugin p = {
.name = "infiniband",
.description = "Infiniband",
.type = PLUGIN_TYPE_NODE,
.node = {
.vectorize = 0,
.size = sizeof(struct infiniband),
.reverse = ib_reverse,
.parse = ib_parse,
.print = ib_print,
.start = ib_start,
.destroy = ib_destroy,
.stop = ib_stop,
.init = ib_init,
.deinit = ib_deinit,
.read = ib_read,
.write = ib_write,
.fd = ib_fd,
.memory_type = memory_ib
}
};
REGISTER_PLUGIN(&p)
LIST_INIT_STATIC(&p.node.instances)

View file

@ -50,11 +50,11 @@ int loopback_open(struct node *n)
int ret;
struct loopback *l = (struct loopback *) n->_vd;
ret = pool_init(&l->pool, l->queuelen, SAMPLE_LEN(n->samplelen), &memtype_hugepage);
ret = pool_init(&l->pool, l->queuelen, SAMPLE_LEN(n->samplelen), &memory_hugepage);
if (ret)
return ret;
return queue_signalled_init(&l->queue, l->queuelen, &memtype_hugepage, QUEUE_SIGNALLED_EVENTFD);
return queue_signalled_init(&l->queue, l->queuelen, &memory_hugepage, QUEUE_SIGNALLED_EVENTFD);
}
int loopback_close(struct node *n)

View file

@ -301,11 +301,11 @@ int mqtt_start(struct node *n)
if (ret)
return ret;
ret = pool_init(&m->pool, 1024, SAMPLE_LEN(n->samplelen), &memtype_hugepage);
ret = pool_init(&m->pool, 1024, SAMPLE_LEN(n->samplelen), &memory_hugepage);
if (ret)
return ret;
ret = queue_signalled_init(&m->queue, 1024, &memtype_hugepage, 0);
ret = queue_signalled_init(&m->queue, 1024, &memory_hugepage, 0);
if (ret)
return ret;

View file

@ -81,7 +81,7 @@ static int websocket_connection_init(struct websocket_connection *c)
c->_name = NULL;
ret = queue_init(&c->queue, DEFAULT_QUEUELEN, &memtype_hugepage);
ret = queue_init(&c->queue, DEFAULT_QUEUELEN, &memory_hugepage);
if (ret)
return ret;
@ -400,11 +400,11 @@ int websocket_start(struct node *n)
int ret;
struct websocket *w = (struct websocket *) n->_vd;
ret = pool_init(&w->pool, DEFAULT_WEBSOCKET_QUEUELEN, SAMPLE_LEN(DEFAULT_WEBSOCKET_SAMPLELEN), &memtype_hugepage);
ret = pool_init(&w->pool, DEFAULT_WEBSOCKET_QUEUELEN, SAMPLE_LEN(DEFAULT_WEBSOCKET_SAMPLELEN), &memory_hugepage);
if (ret)
return ret;
ret = queue_signalled_init(&w->queue, DEFAULT_WEBSOCKET_QUEUELEN, &memtype_hugepage, 0);
ret = queue_signalled_init(&w->queue, DEFAULT_WEBSOCKET_QUEUELEN, &memory_hugepage, 0);
if (ret)
return ret;

View file

@ -46,7 +46,7 @@ static int path_source_init(struct path_source *ps)
{
int ret;
ret = pool_init(&ps->pool, MAX(DEFAULT_QUEUELEN, ps->node->in.vectorize), SAMPLE_LEN(ps->node->samplelen), &memtype_hugepage);
ret = pool_init(&ps->pool, MAX(DEFAULT_QUEUELEN, ps->node->in.vectorize), SAMPLE_LEN(ps->node->samplelen), &memory_hugepage);
if (ret)
return ret;
@ -148,7 +148,7 @@ static int path_destination_init(struct path_destination *pd, int queuelen)
{
int ret;
ret = queue_init(&pd->queue, queuelen, &memtype_hugepage);
ret = queue_init(&pd->queue, queuelen, &memory_hugepage);
if (ret)
return ret;
@ -430,7 +430,7 @@ int path_init2(struct path *p)
if (!p->samplelen)
p->samplelen = DEFAULT_SAMPLELEN;
ret = pool_init(&p->pool, MAX(1, list_length(&p->destinations)) * p->queuelen, SAMPLE_LEN(p->samplelen), &memtype_hugepage);
ret = pool_init(&p->pool, MAX(1, list_length(&p->destinations)) * p->queuelen, SAMPLE_LEN(p->samplelen), &memory_hugepage);
if (ret)
return ret;

View file

@ -25,7 +25,7 @@
#include <villas/memory.h>
#include <villas/kernel/kernel.h>
int pool_init(struct pool *p, size_t cnt, size_t blocksz, struct memtype *m)
int pool_init(struct pool *p, size_t cnt, size_t blocksz, struct memory_type *m)
{
int ret;
@ -35,7 +35,6 @@ int pool_init(struct pool *p, size_t cnt, size_t blocksz, struct memtype *m)
p->alignment = kernel_get_cacheline_size();
p->blocksz = p->alignment * CEIL(blocksz, p->alignment);
p->len = cnt * p->blocksz;
p->mem = m;
void *buffer = memory_alloc_aligned(m, p->len, p->alignment);
if (!buffer)
@ -66,7 +65,7 @@ int pool_destroy(struct pool *p)
queue_destroy(&p->queue);
void *buffer = (char*) p + p->buffer_off;
ret = memory_free(p->mem, buffer, p->len);
ret = memory_free(buffer);
if (ret == 0)
p->state = STATE_DESTROYED;

View file

@ -36,7 +36,7 @@
#include <villas/memory.h>
/** Initialize MPMC queue */
int queue_init(struct queue *q, size_t size, struct memtype *mem)
int queue_init(struct queue *q, size_t size, struct memory_type *m)
{
assert(q->state == STATE_DESTROYED);
@ -47,9 +47,8 @@ int queue_init(struct queue *q, size_t size, struct memtype *mem)
warn("A queue size was changed from %lu to %lu", old_size, size);
}
q->mem = mem;
q->buffer_mask = size - 1;
struct queue_cell *buffer = (struct queue_cell *) memory_alloc(q->mem, sizeof(struct queue_cell) * size);
struct queue_cell *buffer = (struct queue_cell *) memory_alloc(m, sizeof(struct queue_cell) * size);
if (!buffer)
return -2;
@ -74,8 +73,7 @@ int queue_destroy(struct queue *q)
if (q->state == STATE_DESTROYED)
return 0;
ret = memory_free(q->mem, buffer, (q->buffer_mask + 1) * sizeof(struct queue_cell));
ret = memory_free(buffer);
if (ret == 0)
q->state = STATE_DESTROYED;

View file

@ -37,7 +37,7 @@ static void queue_signalled_cleanup(void *p)
pthread_mutex_unlock(&qs->pthread.mutex);
}
int queue_signalled_init(struct queue_signalled *qs, size_t size, struct memtype *mem, int flags)
int queue_signalled_init(struct queue_signalled *qs, size_t size, struct memory_type *mem, int flags)
{
int ret;

View file

@ -35,8 +35,8 @@
size_t shmem_total_size(int queuelen, int samplelen)
{
/* We have the constant const of the memtype header */
return sizeof(struct memtype)
/* We have the constant const of the memory_type header */
return sizeof(struct memory_type)
/* and the shared struct itself */
+ sizeof(struct shmem_shared)
/* the size of the actual queue and the queue for the pool */
@ -44,7 +44,7 @@ size_t shmem_total_size(int queuelen, int samplelen)
/* the size of the pool */
+ queuelen * kernel_get_cacheline_size() * CEIL(SAMPLE_LEN(samplelen), kernel_get_cacheline_size())
/* a memblock for each allocation (1 shmem_shared, 2 queues, 1 pool) */
+ 4 * sizeof(struct memblock)
+ 4 * sizeof(struct memory_block)
/* and some extra buffer for alignment */
+ 1024;
}
@ -55,7 +55,7 @@ int shmem_int_open(const char *wname, const char* rname, struct shmem_int *shm,
int fd, ret;
size_t len;
void *base;
struct memtype *manager;
struct memory_type *manager;
struct shmem_shared *shared;
struct stat stat_buf;
sem_t *sem_own, *sem_other;
@ -92,7 +92,7 @@ retry: fd = shm_open(wname, O_RDWR|O_CREAT|O_EXCL, 0600);
close(fd);
manager = memtype_managed_init(base, len);
manager = memory_managed(base, len);
shared = memory_alloc(manager, sizeof(struct shmem_shared));
if (!shared) {
errno = ENOMEM;
@ -144,7 +144,7 @@ retry: fd = shm_open(wname, O_RDWR|O_CREAT|O_EXCL, 0600);
if (base == MAP_FAILED)
return -10;
cptr = (char *) base + sizeof(struct memtype) + sizeof(struct memblock);
cptr = (char *) base + sizeof(struct memory_type) + sizeof(struct memory_block);
shared = (struct shmem_shared *) cptr;
shm->read.base = base;
shm->read.name = rname;

View file

@ -83,6 +83,27 @@ RUN dnf -y install \
mosquitto-devel \
comedilib-devel comedilib
# IB Verbs Dependencies
RUN dnf -y install \
libibverbs-utils \
libibverbs-devel \
libibverbs-devel-static \
libmlx4 \
libmlx5 \
ibutils \
libibcm \
libibcommon \
libibmad \
libibumad
# RDMA CM Dependencies
RUN dnf -y install \
librdmacm-utils \
librdmacm-devel \
librdmacm \
libibumad-devel \
perftest
# Build & Install Criterion
RUN cd /tmp && \
git clone --recursive https://github.com/Snaipe/Criterion && \

View file

@ -182,7 +182,7 @@ check: if (optarg == endptr)
smps = (struct sample **) alloc(cnt * sizeof(struct sample *));
ret = pool_init(&q, 10 * cnt, SAMPLE_LEN(DEFAULT_SAMPLELEN), &memtype_hugepage);
ret = pool_init(&q, 10 * cnt, SAMPLE_LEN(DEFAULT_SAMPLELEN), &memory_hugepage);
if (ret)
error("Failed to initilize memory pool");

View file

@ -133,7 +133,8 @@ static void * send_loop(void *ctx)
struct sample *smps[node->out.vectorize];
/* Initialize memory */
ret = pool_init(&sendd.pool, LOG2_CEIL(node->out.vectorize), SAMPLE_LEN(DEFAULT_SAMPLELEN), &memtype_hugepage);
ret = pool_init(&sendd.pool, MAX(16384, 2*LOG2_CEIL(node->out.vectorize)), SAMPLE_LEN(DEFAULT_SAMPLELEN), node_memory_type(node, &memory_type_heap));
if (ret < 0)
error("Failed to allocate memory for receive pool.");
@ -197,7 +198,8 @@ static void * recv_loop(void *ctx)
struct sample *smps[node->in.vectorize];
/* Initialize memory */
ret = pool_init(&recvv.pool, LOG2_CEIL(node->in.vectorize), SAMPLE_LEN(DEFAULT_SAMPLELEN), &memtype_hugepage);
ret = pool_init(&recvv.pool, MAX(16*8192, 2*LOG2_CEIL(node->in.vectorize)), SAMPLE_LEN(DEFAULT_SAMPLELEN), node_memory_type(node, &memory_type_heap));
if (ret < 0)
error("Failed to allocate memory for receive pool.");

View file

@ -155,7 +155,7 @@ int main(int argc, char *argv[])
if (ret)
error("Failed to verify node configuration");
ret = pool_init(&q, 16, SAMPLE_LEN(n.samplelen), &memtype_heap);
ret = pool_init(&q, 16, SAMPLE_LEN(n.samplelen), &memory_type_heap);
if (ret)
error("Failed to initialize pool");

View file

@ -120,7 +120,7 @@ check: if (optarg == endptr)
int n = argc - optind; /* The number of files which we compare */
struct side s[n];
ret = pool_init(&pool, n, SAMPLE_LEN(DEFAULT_SAMPLELEN), &memtype_heap);
ret = pool_init(&pool, n, SAMPLE_LEN(DEFAULT_SAMPLELEN), &memory_type_heap);
if (ret)
error("Failed to initialize pool");

View file

@ -185,7 +185,7 @@ ParameterizedTest(char *fmt, io, lowlevel)
struct sample *smps[NUM_SAMPLES];
struct sample *smpt[NUM_SAMPLES];
ret = pool_init(&p, 2 * NUM_SAMPLES, SAMPLE_LEN(NUM_VALUES), &memtype_hugepage);
ret = pool_init(&p, 2 * NUM_SAMPLES, SAMPLE_LEN(NUM_VALUES), &memory_hugepage);
cr_assert_eq(ret, 0);
info("Running test for format = %s", fmt);
@ -232,7 +232,7 @@ ParameterizedTest(char *fmt, io, highlevel)
info("Running test for format = %s", fmt);
ret = pool_init(&p, 2 * NUM_SAMPLES, SAMPLE_LEN(NUM_VALUES), &memtype_hugepage);
ret = pool_init(&p, 2 * NUM_SAMPLES, SAMPLE_LEN(NUM_VALUES), &memory_hugepage);
cr_assert_eq(ret, 0);
generate_samples(&p, smps, smpt, NUM_SAMPLES, NUM_VALUES);

View file

@ -28,26 +28,31 @@
#include <villas/memory.h>
#include <villas/utils.h>
#define HUGEPAGESIZE (1 << 22)
TheoryDataPoints(memory, aligned) = {
DataPoints(size_t, 1, 32, 55, 1 << 10, 1 << 20),
DataPoints(size_t, 1, 8, 1 << 12),
DataPoints(struct memtype *, &memtype_heap, &memtype_hugepage)
DataPoints(struct memory_type *, &memory_type_heap, &memory_hugepage)
};
Theory((size_t len, size_t align, struct memtype *m), memory, aligned) {
Theory((size_t len, size_t align, struct memory_type *m), memory, aligned) {
int ret;
void *ptr;
ret = memory_init(100);
cr_assert(!ret);
ptr = memory_alloc_aligned(m, len, align);
cr_assert_neq(ptr, NULL, "Failed to allocate memory");
cr_assert(IS_ALIGNED(ptr, align));
if (m == &memtype_hugepage) {
if (m == &memory_hugepage) {
cr_assert(IS_ALIGNED(ptr, HUGEPAGESIZE));
}
ret = memory_free(m, ptr, len);
ret = memory_free(ptr);
cr_assert_eq(ret, 0, "Failed to release memory: ret=%d, ptr=%p, len=%zu: %s", ret, ptr, len, strerror(errno));
}
@ -57,15 +62,18 @@ Test(memory, manager) {
int ret;
void *p, *p1, *p2, *p3;
struct memtype *m;
struct memory_type *m;
total_size = 1 << 10;
max_block = total_size - sizeof(struct memtype) - sizeof(struct memblock);
max_block = total_size - sizeof(struct memory_type) - sizeof(struct memory_block);
p = memory_alloc(&memtype_heap, total_size);
ret = memory_init(0);
cr_assert(!ret);
p = memory_alloc(&memory_type_heap, total_size);
cr_assert_not_null(p);
m = memtype_managed_init(p, total_size);
m = memory_managed(p, total_size);
cr_assert_not_null(m);
p1 = memory_alloc(m, 16);
@ -74,7 +82,7 @@ Test(memory, manager) {
p2 = memory_alloc(m, 32);
cr_assert_not_null(p2);
ret = memory_free(m, p1, 16);
ret = memory_free(p1);
cr_assert(ret == 0);
p1 = memory_alloc_aligned(m, 128, 128);
@ -85,21 +93,21 @@ Test(memory, manager) {
cr_assert(p3);
cr_assert(IS_ALIGNED(p3, 256));
ret = memory_free(m, p2, 32);
ret = memory_free(p2);
cr_assert(ret == 0);
ret = memory_free(m, p1, 128);
ret = memory_free(p1);
cr_assert(ret == 0);
ret = memory_free(m, p3, 128);
ret = memory_free(p3);
cr_assert(ret == 0);
p1 = memory_alloc(m, max_block);
cr_assert_not_null(p1);
ret = memory_free(m, p1, max_block);
ret = memory_free(p1);
cr_assert(ret == 0);
ret = memory_free(&memtype_heap, p, total_size);
ret = memory_free(p);
cr_assert(ret == 0);
}

View file

@ -32,16 +32,16 @@ struct param {
int thread_count;
int pool_size;
size_t block_size;
struct memtype *memtype;
struct memory_type *memory_type;
};
ParameterizedTestParameters(pool, basic)
{
static struct param params[] = {
{ 1, 4096, 150, &memtype_heap },
{ 1, 128, 8, &memtype_hugepage },
{ 1, 4, 8192, &memtype_hugepage },
{ 1, 1 << 13, 4, &memtype_heap }
{ 1, 4096, 150, &memory_type_heap },
{ 1, 128, 8, &memory_hugepage },
{ 1, 4, 8192, &memory_hugepage },
{ 1, 1 << 13, 4, &memory_type_heap }
};
return cr_make_param_array(struct param, params, ARRAY_LEN(params));
@ -54,7 +54,7 @@ ParameterizedTest(struct param *p, pool, basic)
void *ptr, *ptrs[p->pool_size];
ret = pool_init(&pool, p->pool_size, p->block_size, p->memtype);
ret = pool_init(&pool, p->pool_size, p->block_size, p->memory_type);
cr_assert_eq(ret, 0, "Failed to create pool");
ptr = pool_get(&pool);

View file

@ -51,7 +51,7 @@ struct param {
int batch_size;
void * (*thread_func)(void *);
struct queue queue;
const struct memtype *memtype;
const struct memory_type *memory_type;
};
/** Get thread id as integer
@ -243,7 +243,7 @@ Test(queue, single_threaded)
.start = 1 /* we start immeadiatly */
};
ret = queue_init(&p.queue, p.queue_size, &memtype_heap);
ret = queue_init(&p.queue, p.queue_size, &memory_type_heap);
cr_assert_eq(ret, 0, "Failed to create queue");
producer(&p);
@ -265,35 +265,35 @@ ParameterizedTestParameters(queue, multi_threaded)
.thread_count = 32,
.thread_func = producer_consumer_many,
.batch_size = 10,
.memtype = &memtype_heap
.memory_type = &memory_type_heap
}, {
.iter_count = 1 << 8,
.queue_size = 1 << 9,
.thread_count = 4,
.thread_func = producer_consumer_many,
.batch_size = 100,
.memtype = &memtype_heap
.memory_type = &memory_type_heap
}, {
.iter_count = 1 << 16,
.queue_size = 1 << 14,
.thread_count = 16,
.thread_func = producer_consumer_many,
.batch_size = 100,
.memtype = &memtype_heap
.memory_type = &memory_type_heap
}, {
.iter_count = 1 << 8,
.queue_size = 1 << 9,
.thread_count = 4,
.thread_func = producer_consumer_many,
.batch_size = 10,
.memtype = &memtype_heap
.memory_type = &memory_type_heap
}, {
.iter_count = 1 << 16,
.queue_size = 1 << 9,
.thread_count = 16,
.thread_func = producer_consumer,
.batch_size = 10,
.memtype = &memtype_hugepage
.memory_type = &memory_hugepage
}
};
@ -308,7 +308,7 @@ ParameterizedTest(struct param *p, queue, multi_threaded, .timeout = 20)
p->start = 0;
ret = queue_init(&p->queue, p->queue_size, &memtype_heap);
ret = queue_init(&p->queue, p->queue_size, &memory_type_heap);
cr_assert_eq(ret, 0, "Failed to create queue");
uint64_t start_tsc_time, end_tsc_time;
@ -350,7 +350,7 @@ Test(queue, init_destroy)
int ret;
struct queue q = { .state = STATE_DESTROYED };
ret = queue_init(&q, 1024, &memtype_heap);
ret = queue_init(&q, 1024, &memory_type_heap);
cr_assert_eq(ret, 0); /* Should succeed */
ret = queue_destroy(&q);

View file

@ -132,7 +132,7 @@ ParameterizedTest(struct param *param, queue_signalled, simple, .timeout = 5)
pthread_t t1, t2;
ret = queue_signalled_init(&q, LOG2_CEIL(NUM_ELEM), &memtype_heap, param->flags);
ret = queue_signalled_init(&q, LOG2_CEIL(NUM_ELEM), &memory_type_heap, param->flags);
cr_assert_eq(ret, 0, "Failed to initialize queue: flags=%#x, ret=%d", param->flags, ret);
ret = pthread_create(&t1, NULL, producer, &q);