1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00

node-modbus: Add initial modbus support

Signed-off-by: Philipp Jungkamp <Philipp.Jungkamp@opal-rt.com>
This commit is contained in:
Philipp Jungkamp 2023-08-22 16:11:32 +02:00 committed by Steffen Vogel
parent 53848f5345
commit 5aacd5f49e
5 changed files with 1278 additions and 0 deletions

View file

@ -109,6 +109,7 @@ pkg_check_modules(LIBIEC61850 IMPORTED_TARGET libiec61850>=1.5.0)
pkg_check_modules(LIB60870 IMPORTED_TARGET lib60870>=2.3.1)
pkg_check_modules(LIBCONFIG IMPORTED_TARGET libconfig>=1.4.9)
pkg_check_modules(MOSQUITTO IMPORTED_TARGET libmosquitto>=1.6.9)
pkg_check_modules(MODBUS IMPORTED_TARGET libmodbus>=3.1.0)
pkg_check_modules(RDKAFKA IMPORTED_TARGET rdkafka>=1.5.0)
pkg_check_modules(HIREDIS IMPORTED_TARGET hiredis>=1.0.0)
pkg_check_modules(REDISPP IMPORTED_TARGET redis++>=1.2.0)
@ -201,6 +202,7 @@ cmake_dependent_option(WITH_NODE_INFINIBAND "Build with infiniband node-type"
cmake_dependent_option(WITH_NODE_INFLUXDB "Build with influxdb node-type" "${WITH_DEFAULTS}" "" OFF)
cmake_dependent_option(WITH_NODE_KAFKA "Build with kafka node-type" "${WITH_DEFAULTS}" "RDKAFKA_FOUND" OFF)
cmake_dependent_option(WITH_NODE_LOOPBACK "Build with loopback node-type" "${WITH_DEFAULTS}" "" OFF)
cmake_dependent_option(WITH_NODE_MODBUS "Build with modbus node-type" "${WITH_DEFAULTS}" "MODBUS_FOUND" OFF)
cmake_dependent_option(WITH_NODE_MQTT "Build with mqtt node-type" "${WITH_DEFAULTS}" "MOSQUITTO_FOUND" OFF)
cmake_dependent_option(WITH_NODE_NANOMSG "Build with nanomsg node-type" "${WITH_DEFAULTS}" "NANOMSG_FOUND" OFF)
cmake_dependent_option(WITH_NODE_NGSI "Build with ngsi node-type" "${WITH_DEFAULTS}" "" OFF)
@ -311,6 +313,7 @@ add_feature_info(NODE_INFINIBAND WITH_NODE_INFINIBAND "Build with
add_feature_info(NODE_INFLUXDB WITH_NODE_INFLUXDB "Build with influxdb node-type")
add_feature_info(NODE_KAFKA WITH_NODE_KAFKA "Build with kafka node-type")
add_feature_info(NODE_LOOPBACK WITH_NODE_LOOPBACK "Build with loopback node-type")
add_feature_info(NODE_MODBUS WITH_NODE_MODBUS "Build with modbus node-type")
add_feature_info(NODE_MQTT WITH_NODE_MQTT "Build with mqtt node-type")
add_feature_info(NODE_NANOMSG WITH_NODE_NANOMSG "Build with nanomsg node-type")
add_feature_info(NODE_NGSI WITH_NODE_NGSI "Build with ngsi node-type")

View file

@ -0,0 +1,67 @@
nodes = {
modbus_node = {
type = "modbus"
transport = "tcp" # "tcp"
response_timeout = 1.0 # in seconds
# For transport = tcp
remote = "127.0.0.1"
port = 1502
# For transport = rtu
device = "/dev/ttyS0"
baudrate = 9600
parity = "none" # "even" "odd"
data_bits = 5 # 6 7 8
stop_bits = 1 # 2
# Modbus device / unit ID
# this is optional for TCP
unit = 1
rate = 10 # in Hz
in = {
signals = (
{
type = "float"
address = 0x50
},
{
type = "boolean"
address = 0x54
bit = 1
},
{
type = "float"
address = 0x52
integer_registers = 1
scale = 10
offset = 2
},
{
type = "boolean"
address = 0x54
bit = 0
},
{
type = "float"
address = 0x01
scale = 2
offset = 10
}
)
}
out = {
signals = (
{
type = "float"
address = 0x01
scale = 2
offset = 10
}
)
}
}
}

View file

@ -0,0 +1,290 @@
/** A Modbus node-type supporting RTU and TCP based transports.
*
* @author Philipp Jungkamp <philipp.jungkamp@opal-rt.com>
* @copyright 2023, OPAL-RT Germany GmbH
* @license Apache 2.0
*********************************************************************************/
#pragma once
#include <villas/node/config.hpp>
#include <villas/node.hpp>
#include <villas/timing.hpp>
#include <villas/sample.hpp>
#include <villas/exceptions.hpp>
#include <villas/task.hpp>
#include <modbus/modbus.h>
#include <stdint.h>
#include <bit>
#include <vector>
#include <optional>
#include <variant>
#include <algorithm>
#include <numeric>
namespace villas {
namespace node {
namespace modbus {
using modbus_addr_t = uint16_t;
using modbus_addrdiff_t = int32_t;
enum class Parity : char {
None = 'N',
Even = 'E',
Odd = 'O',
};
enum class Endianess : char {
Big,
Little,
};
// The settings for an RTU modbus connection.
struct Rtu {
std::string device;
Parity parity;
int baudrate;
int data_bits;
int stop_bits;
unsigned char unit;
static
Rtu parse(json_t *json);
};
// The settings for an TCP MODBUS connection.
struct Tcp {
std::string remote;
uint16_t port;
std::optional<unsigned char> unit;
static
Tcp parse(json_t *json);
};
// Forward declaration.
class RegisterMappingSingle;
// A merged block of mappings.
using RegisterMappingBlock = std::vector<RegisterMappingSingle>;
// Either a single mapping or a merged block of mappings.
using RegisterMapping = std::variant<RegisterMappingSingle, RegisterMappingBlock>;
// Swap the two bytes of a 16 bit integer.
uint16_t byteswap(uint16_t i);
// The start of a single register mapping.
modbus_addr_t blockBegin(RegisterMappingSingle const &single);
// The start of a block of register mappings.
modbus_addr_t blockBegin(RegisterMappingBlock const &block);
// The start of either a single or a block of register mappings.
modbus_addr_t blockBegin(RegisterMapping const &mapping);
// The end of a single register mapping.
modbus_addr_t blockEnd(RegisterMappingSingle const &single);
// The end of a block of register mappings.
modbus_addr_t blockEnd(RegisterMappingBlock const &block);
// The end of either a single or a block of register mappings.
modbus_addr_t blockEnd(RegisterMapping const &mapping);
// The number of mapped registers in a single register mapping.
modbus_addr_t mappedRegisters(RegisterMappingSingle const &single);
// The number of mapped registers in a block of register mappings.
modbus_addr_t mappedRegisters(RegisterMappingBlock const &block);
// The number of mapped registers in either a single or a block of register mappings.
modbus_addr_t mappedRegisters(RegisterMapping const &mapping);
// The distance between two blocks.
modbus_addrdiff_t blockDistance(RegisterMapping const &lhs, RegisterMapping const &rhs);
// Whether there are overlapping bit mappings between lhs and rhs.
bool hasOverlappingBitMapping(RegisterMapping const &lhs, RegisterMapping const &rhs);
// The compare the addresses of two mappings.
bool compareBlockAddress(RegisterMapping const &lhs, RegisterMapping const &rhs);
// Parse an Endianess from a null terminated string.
Endianess parseEndianess(char const *str);
// Parse an Parity from a null terminated string.
Parity parseParity(char const *str);
// The mapping from a register to a signal.
class RegisterMappingSingle {
public:
inline static constexpr
size_t MAX_REGISTERS = sizeof(int64_t) / sizeof(int16_t);
struct IntegerToInteger {
Endianess word_endianess;
Endianess byte_endianess;
modbus_addr_t num_registers;
int64_t read(uint16_t const *registers) const;
void write(int64_t i, uint16_t *registers) const;
};
struct IntegerToFloat {
IntegerToInteger integer_conversion;
double offset;
double scale;
double read(uint16_t const *registers) const;
void write(double d, uint16_t *registers) const;
};
struct FloatToFloat {
Endianess word_endianess;
Endianess byte_endianess;
double offset;
double scale;
double read(uint16_t const *registers) const;
void write(double d, uint16_t *registers) const;
};
struct BitToBool {
uint8_t bit;
bool read(uint16_t reg) const;
};
// Conversion rule for registers.
//
// - IntegerToInteger means merging multiple registers.
// - FloatToFloat converts from IEEE float to float.
// - IntegerToFloat converts registers to integer, casts to float
// and then applies offset and scale to produce a float.
// - BitToBool takes a single bit from a registers and reports it as a boolean.
std::variant<IntegerToInteger, IntegerToFloat, FloatToFloat, BitToBool> conversion;
RegisterMappingSingle(unsigned int signal_index, modbus_addr_t address);
unsigned int signal_index;
modbus_addr_t address;
static
RegisterMappingSingle parse(unsigned int index, Signal::Ptr signal, json_t *json);
SignalData read(uint16_t const *registers, modbus_addr_t length) const;
void write(SignalData data, uint16_t *registers, modbus_addr_t length) const;
modbus_addr_t num_registers() const;
};
class ModbusNode final : public Node {
private:
// The maximum size of a RegisterMappingBlock created during mergeMappings.
// The size of a block here is defined as the difference between blockBegin and blockEnd.
modbus_addr_t max_block_size;
// The minimum block usage of a RegisterMappingBlock created during mergeMappings.
// The usage of a block is defined as the ration of registers used in mappings to the size of the block.
// The size of a block here is defined as the difference between blockBegin and blockEnd.
float min_block_usage;
// The type of connection settings used to initialize the modbus_context.
std::variant<std::monostate, Tcp, Rtu> connection_settings;
// The rate used for periodically querying the modbus device registers.
double rate;
// The timeout in seconds when waiting for a response from a modbus slave/server.
double response_timeout;
// Mappings used to create the input signals from the read registers.
std::vector<RegisterMapping> in_mappings;
// Number of in signals.
unsigned int num_in_signals;
// Mappings used to create the input signals from the read registers.
std::vector<RegisterMapping> out_mappings;
// Number of out signals.
unsigned int num_out_signals;
// The interval in seconds for trying to reconnect on connection loss.
double reconnect_interval;
std::vector<uint16_t> read_buffer;
std::vector<uint16_t> write_buffer;
modbus_t *modbus_context;
Task read_task;
std::atomic<bool> reconnecting;
bool isReconnecting();
void reconnect();
static
void mergeMappingInplace(RegisterMapping &lhs, RegisterMappingBlock const &rhs);
static
void mergeMappingInplace(RegisterMapping &lhs, RegisterMappingSingle const &rhs);
bool tryMergeMappingInplace(RegisterMapping &lhs, RegisterMapping const &rhs);
void mergeMappings(std::vector<RegisterMapping> &mappings, modbus_addrdiff_t max_block_distance);
unsigned int parseMappings(std::vector<RegisterMapping> &mappings, json_t *json);
int readMapping(RegisterMappingSingle const &mapping, uint16_t const *registers, modbus_addr_t num_registers, SignalData *signals, unsigned int num_signals);
int readMapping(RegisterMappingBlock const &mapping, uint16_t const *registers, modbus_addr_t num_registers, SignalData *signals, unsigned int num_signals);
int readMapping(RegisterMapping const &mapping, uint16_t const *registers, modbus_addr_t num_registers, SignalData *signals, unsigned int num_signals);
int readBlock(RegisterMapping const &mapping, SignalData *signals, size_t num_signals);
virtual
int _read(struct Sample *smps[], unsigned int cnt);
int writeMapping(RegisterMappingSingle const &mapping, uint16_t *registers, modbus_addr_t num_registers, SignalData const *signals, unsigned int num_signals);
int writeMapping(RegisterMappingBlock const &mapping, uint16_t *registers, modbus_addr_t num_registers, SignalData const *signals, unsigned int num_signals);
int writeMapping(RegisterMapping const &mapping, uint16_t *registers, modbus_addr_t num_registers, SignalData const *signals, unsigned int num_signals);
int writeBlock(RegisterMapping const &mapping, SignalData const *signals, size_t num_signals);
virtual
int _write(struct Sample *smps[], unsigned int cnt);
public:
ModbusNode(const uuid_t &id = {}, const std::string &name = "");
virtual
~ModbusNode();
virtual
int prepare();
virtual
int parse(json_t *json);
virtual
int check();
virtual
int start();
virtual
int stop();
virtual
std::vector<int> getPollFDs();
virtual
const std::string & getDetails();
};
} /* namespace modbus */
} /* namespace node */
} /* namespace villas */

View file

@ -79,6 +79,11 @@ if(WITH_NODE_OPAL)
list(APPEND LIBRARIES ${OPAL_LIBRARIES})
endif()
if(WITH_NODE_MODBUS)
list(APPEND NODE_SRC modbus.cpp)
list(APPEND LIBRARIES PkgConfig::MODBUS)
endif()
# Enable nanomsg node type when libnanomsg is available
if(WITH_NODE_NANOMSG)
list(APPEND NODE_SRC nanomsg.cpp)

913
lib/nodes/modbus.cpp Normal file
View file

@ -0,0 +1,913 @@
/** A Modbus node-type supporting RTU and TCP transports.
*
* The modbus communication using the libmodbus library is fairly simple.
*
* 1. Create a modbus_t modbus_context from the connection_settings.
* 2. Call modbus_connect to create a connection to a server.
* 3. Use modbus_read_registers/modbus_write_registers to read/write values.
*
* The complicated part is the configuration parsing, especially the mapping
* from signals to registers. We try to group as many registers as we can
* together to query them using a single modbus command. The general idea is:
*
* 1. Create a simple mapping for all signal specifications in the parse() function.
* 2. Sort all mappings by the range of registers the need.
* 3. Merge mappings that sit next to each other into larger groups until either ...
* - ... the group is larger than "max_block_size".
* - ... the ration of needed registers to queried registers falls below
* "min_block_usage". So we cap the amount of unecessary data transmitted.
*
* The merging process is further complicated by the possibility to map bits from
* a register to their own signals. We don't generally want to allow mapping the
* same register multiple times, except for the case of bit mappings.
*
* While a general overlap between any two mappings is considered an error, the
* case of overlapping bit mappings is detected by hasOverlappingBitMapping and
* handled in blockDistance and compareBlockAddress.
*
* - The special case in compareBlockAddress makes bit mappings of the same register
* reside next to each other after sorting the mappings.
* - The special case in blockDistance makes causes the bit mappings to be grouped
* first, before any adjacent registers.
*
* @author Philipp Jungkamp <philipp.jungkamp@opal-rt.com>
* @copyright 2023, OPAL-RT Germany GmbH
* @license Apache 2.0
*********************************************************************************/
#include <villas/node_compat.hpp>
#include <villas/nodes/modbus.hpp>
#include <villas/utils.hpp>
#include <villas/sample.hpp>
#include <villas/exceptions.hpp>
#include <villas/super_node.hpp>
#include <villas/exceptions.hpp>
#include <fmt/format.h>
#include <atomic>
#include <chrono>
using namespace villas;
using namespace villas::node;
using namespace villas::node::modbus;
using namespace villas::utils;
int64_t RegisterMappingSingle::IntegerToInteger::read(uint16_t const *registers) const
{
int64_t integer = 0;
auto ptr = word_endianess == Endianess::Big ? registers + num_registers - 1 : registers;
for (size_t i = 0; i < num_registers; ++i) {
integer <<= sizeof(uint16_t) * 8;
if (byte_endianess == Endianess::Big)
integer |= (int64_t) *ptr;
else
integer |= (int64_t) byteswap(*ptr);
if (word_endianess == Endianess::Big)
--ptr;
else
++ptr;
}
return integer;
}
void RegisterMappingSingle::IntegerToInteger::write(int64_t integer, uint16_t *registers) const
{
auto ptr = word_endianess == Endianess::Big ? registers : registers + num_registers - 1;
for (size_t i = 0; i < num_registers; ++i) {
if (byte_endianess == Endianess::Big)
*ptr = (uint16_t) integer;
else
*ptr = byteswap((uint16_t) integer);
if (word_endianess == Endianess::Big)
++ptr;
else
--ptr;
integer >>= sizeof(uint16_t) * 8;
}
}
double RegisterMappingSingle::IntegerToFloat::read(uint16_t const *registers) const
{
int64_t integer = integer_conversion.read(registers);
return integer * scale + offset;
}
void RegisterMappingSingle::IntegerToFloat::write(double d, uint16_t *registers) const
{
int64_t integer = (d - offset) / scale;
integer_conversion.write(integer, registers);
}
double RegisterMappingSingle::FloatToFloat::read(uint16_t const *registers) const
{
static_assert(sizeof(float) == sizeof(uint32_t));
auto const conversion = IntegerToInteger {
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = 2,
};
union {
uint32_t i;
float f;
} value;
value.i = (uint32_t) conversion.read(registers);
return value.f * scale + offset;
}
void RegisterMappingSingle::FloatToFloat::write(double d, uint16_t *registers) const
{
static_assert(sizeof(float) == sizeof(uint32_t));
auto const conversion = IntegerToInteger {
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = 2,
};
union {
uint32_t i;
float f;
} value;
value.f = (d - offset) / scale;
conversion.write((int64_t) value.i, registers);
}
bool RegisterMappingSingle::BitToBool::read(uint16_t reg) const
{
return (reg >> bit) & 1;
}
RegisterMappingSingle::RegisterMappingSingle(unsigned int signal_index, modbus_addr_t address) :
conversion(IntegerToInteger {
.word_endianess = Endianess::Big,
.byte_endianess = Endianess::Big,
.num_registers = 1,
}),
signal_index(signal_index),
address(address)
{ }
SignalData RegisterMappingSingle::read(uint16_t const *registers, modbus_addr_t length) const
{
SignalData data;
if (num_registers() != length)
throw RuntimeError { "reading from invalid register range" };
if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
data.i = i2i->read(registers);
else if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
data.f = i2f->read(registers);
else if (auto f2f = std::get_if<FloatToFloat>(&conversion))
data.f = f2f->read(registers);
else if (auto b2b = std::get_if<BitToBool>(&conversion))
data.b = b2b->read(*registers);
else
throw RuntimeError { "read unsupported" };
return data;
}
void RegisterMappingSingle::write(SignalData data, uint16_t *registers, modbus_addr_t length) const
{
if (num_registers() != length)
throw RuntimeError { "writing to invalid register range" };
if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
i2i->write(data.i, registers);
else if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
i2f->write(data.f, registers);
else if (auto f2f = std::get_if<FloatToFloat>(&conversion))
f2f->write(data.f, registers);
else
throw RuntimeError { "write unsupported" };
}
modbus_addr_t RegisterMappingSingle::num_registers() const
{
if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
return i2i->num_registers;
if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
return i2f->integer_conversion.num_registers;
if (std::holds_alternative<FloatToFloat>(conversion))
return 2;
if (std::holds_alternative<BitToBool>(conversion))
return 1;
throw RuntimeError { "unreachable" };
}
uint16_t modbus::byteswap(uint16_t i)
{
uint8_t low = (i & 0x00FF);
uint8_t high = (i & 0xFF00) >> 8;
return (low << 8) | high;
}
modbus_addr_t modbus::blockBegin(RegisterMappingSingle const &single)
{
return single.address;
}
modbus_addr_t modbus::blockBegin(RegisterMappingBlock const &block)
{
assert(!block.empty());
return blockBegin(block.front());
}
modbus_addr_t modbus::blockBegin(RegisterMapping const &mapping)
{
return std::visit([](auto &v){
return blockBegin(v);
}, mapping);
}
modbus_addr_t modbus::blockEnd(RegisterMappingSingle const &single)
{
return single.address + single.num_registers();
}
modbus_addr_t modbus::blockEnd(RegisterMappingBlock const &block)
{
assert(!block.empty());
return blockEnd(block.back());
}
modbus_addr_t modbus::blockEnd(RegisterMapping const &mapping)
{
return std::visit([](auto &v){
return blockEnd(v);
}, mapping);
}
modbus_addr_t modbus::mappedRegisters(RegisterMappingSingle const &single)
{
return single.num_registers();
}
modbus_addr_t modbus::mappedRegisters(RegisterMappingBlock const &block)
{
auto mapped = 0;
modbus_addr_t last_address = -1;
for (auto &single : block) {
if (single.address != last_address)
mapped += single.num_registers();
last_address = single.address;
}
return mapped;
}
modbus_addr_t modbus::mappedRegisters(RegisterMapping const &mapping)
{
return std::visit([](auto &v){
return mappedRegisters(v);
}, mapping);
}
modbus_addrdiff_t modbus::blockDistance(RegisterMapping const &lhs, RegisterMapping const &rhs)
{
if (blockBegin(rhs) >= blockEnd(lhs))
return (modbus_addrdiff_t) blockBegin(rhs) - blockEnd(lhs);
if (blockBegin(lhs) >= blockEnd(rhs))
return (modbus_addrdiff_t) blockBegin(lhs) - blockEnd(rhs);
if (hasOverlappingBitMapping(lhs, rhs))
return -1;
throw RuntimeError { "overlapping mappings" };
}
bool modbus::hasOverlappingBitMapping(RegisterMapping const &lhs, RegisterMapping const &rhs)
{
// Only check if there is exactly 1 register of overlap.
if (blockEnd(lhs) - blockBegin(rhs) != 1 && blockEnd(rhs) - blockBegin(lhs) != 1)
return false;
// Assume that lhs is at a lower address than rhs.
if (blockBegin(rhs) < blockBegin(lhs) || blockEnd(rhs) < blockEnd(lhs))
return hasOverlappingBitMapping(rhs, lhs);
// Get the last mapping from the lhs block.
RegisterMappingSingle const *lhs_back = nullptr;
if (auto single = std::get_if<RegisterMappingSingle>(&lhs))
lhs_back = single;
else if (auto block = std::get_if<RegisterMappingBlock>(&lhs))
lhs_back = &block->back();
else
return false;
// We are only interested in bit mappings.
if (!std::holds_alternative<RegisterMappingSingle::BitToBool>(lhs_back->conversion))
return false;
// Get the first mapping from the rhs block.
RegisterMappingSingle const *rhs_front = nullptr;
if (auto single = std::get_if<RegisterMappingSingle>(&rhs))
rhs_front = single;
else if (auto block = std::get_if<RegisterMappingBlock>(&rhs))
rhs_front = &block->front();
else
return false;
// We are only interested in bit mappings.
if (!std::holds_alternative<RegisterMappingSingle::BitToBool>(rhs_front->conversion))
return false;
// The last register of lhs and the first register of rhs overlap and are both bit mappings.
return true;
}
bool modbus::compareBlockAddress(RegisterMapping const &lhs, RegisterMapping const &rhs)
{
if (blockBegin(rhs) >= blockEnd(lhs))
return true;
if (blockBegin(lhs) >= blockEnd(rhs))
return false;
if (hasOverlappingBitMapping(lhs, rhs))
return false;
throw RuntimeError { "overlapping mappings" };
}
bool ModbusNode::isReconnecting()
{
return reconnecting.load();
}
void ModbusNode::reconnect()
{
if (reconnecting.exchange(true))
return;
logger->error("No connection to the Modbus server. Reconnecting...");
std::thread([this](){
auto start = std::chrono::steady_clock::now();
if (modbus_connect(modbus_context) == -1) {
logger->error("reconnect failure: ", modbus_strerror(errno));
std::this_thread::sleep_until(start + std::chrono::duration<double>(reconnect_interval));
}
reconnecting.store(false);
}).detach();
}
void ModbusNode::mergeMappingInplace(RegisterMapping &lhs, RegisterMappingBlock const &rhs)
{
if (auto lhs_single = std::get_if<RegisterMappingSingle>(&lhs))
lhs = RegisterMappingBlock { *lhs_single };
auto &block = std::get<RegisterMappingBlock>(lhs);
block.reserve(blockEnd(rhs) - blockBegin(lhs));
std::copy(std::begin(rhs), std::end(rhs), std::back_inserter(block));
}
void ModbusNode::mergeMappingInplace(RegisterMapping &lhs, RegisterMappingSingle const &rhs)
{
if (auto lhs_single = std::get_if<RegisterMappingSingle>(&lhs))
lhs = RegisterMappingBlock { *lhs_single };
auto &block = std::get<RegisterMappingBlock>(lhs);
block.push_back(rhs);
}
bool ModbusNode::tryMergeMappingInplace(RegisterMapping &lhs, RegisterMapping const &rhs)
{
auto block_size = blockEnd(rhs) - blockBegin(lhs);
if (block_size >= max_block_size)
return false;
auto block_usage = (mappedRegisters(lhs) + mappedRegisters(rhs)) / (float) block_size;
if (block_usage < min_block_usage)
return false;
std::visit([&lhs](auto const &rhs){
mergeMappingInplace(lhs, rhs);
}, rhs);
return true;
}
void ModbusNode::mergeMappings(std::vector<RegisterMapping> &mappings, modbus_addrdiff_t max_block_distance)
{
if (std::size(mappings) < 2)
return;
// Sort all mappings by their block address.
std::sort(std::begin(mappings), std::end(mappings), compareBlockAddress);
// Calculate the distances. (number of unused registers inbetween mappings)
auto distances = std::vector<int>();
distances.reserve(std::size(mappings));
for (size_t i = 1; i < std::size(mappings); i++)
distances.push_back(blockDistance(mappings[i-1], mappings[i]));
for (;;) {
// Try to group the mappings closest to each other first.
auto min_distance = std::min_element(std::begin(distances), std::end(distances));
// The closest distance is too far to merge, abort the merging process.
if (min_distance == std::end(distances) || *min_distance >= max_block_distance)
break;
// Find the mappings to the left and right of the minimum distance.
auto i = std::distance(std::begin(distances), min_distance);
auto left_mapping = std::next(std::begin(mappings), i);
auto right_mapping = std::next(std::begin(mappings), i+1);
if (tryMergeMappingInplace(*left_mapping, *right_mapping)) {
// Remove the right mapping and the distance
// if it could be merged into the left mapping.
mappings.erase(right_mapping);
distances.erase(min_distance);
} else {
// Set the distance to a value, so that it won't be retried.
*min_distance = max_block_distance;
}
}
}
int ModbusNode::readBlock(RegisterMapping const &mapping, SignalData *data, size_t size)
{
if (isReconnecting())
return -1;
auto address = blockBegin(mapping);
auto block_size = blockEnd(mapping) - address;
read_buffer.resize(block_size);
if (modbus_read_registers(modbus_context, address, block_size, read_buffer.data()) == -1) {
logger->error("read registers failure: ", modbus_strerror(errno));
reconnect();
return -1;
}
return readMapping(mapping, read_buffer.data(), read_buffer.size(), data, size);
}
int ModbusNode::readMapping(RegisterMapping const &mapping, uint16_t const *registers, modbus_addr_t num_registers, SignalData *signals, unsigned int num_signals)
{
return std::visit([this, registers, num_registers, signals, num_signals](auto mapping){
return readMapping(mapping, registers, num_registers, signals, num_signals);
}, mapping);
}
int ModbusNode::readMapping(RegisterMappingSingle const &single, uint16_t const *registers, modbus_addr_t num_registers, SignalData *signals, unsigned int num_signals)
{
auto signal_data = single.read(registers, num_registers);
assert(single.signal_index < num_signals);
signals[single.signal_index] = signal_data;
return 0;
}
int ModbusNode::readMapping(RegisterMappingBlock const &block, uint16_t const *registers, modbus_addr_t num_registers, SignalData *signals, unsigned int num_signals)
{
auto begin_block = blockBegin(block);
for (auto &single : block) {
auto begin_single = blockBegin(single);
auto end_single = blockEnd(single);
assert(end_single - begin_block <= num_registers);
if (auto ret = readMapping(single, &registers[begin_single - begin_block], end_single - begin_single, signals, num_signals))
return ret;
}
return 0;
}
int ModbusNode::_read(struct Sample *smps[], unsigned cnt)
{
read_task.wait();
for (unsigned int i = 0; i < cnt; ++i) {
auto smp = smps[i];
smp->flags |= (int) SampleFlags::HAS_DATA;
for (auto &mapping : in_mappings) {
smp->length = num_in_signals;
assert(smp->length <= smp->capacity);
if (auto ret = readBlock(mapping, smp->data, smp->length))
return ret;
}
}
return cnt;
}
int ModbusNode::writeBlock(RegisterMapping const &mapping, SignalData const *data, size_t size)
{
if (isReconnecting())
return -1;
auto address = blockBegin(mapping);
auto block_size = blockEnd(mapping) - address;
write_buffer.resize(block_size);
if (auto ret = writeMapping(mapping, write_buffer.data(), write_buffer.size(), data, size))
return ret;
if (modbus_write_registers(modbus_context, address, block_size, write_buffer.data()) == -1) {
logger->error("write registers failure: ", modbus_strerror(errno));
reconnect();
return -1;
}
return 0;
}
int ModbusNode::writeMapping(RegisterMapping const &mapping, uint16_t *registers, modbus_addr_t num_registers, SignalData const *signals, unsigned int num_signals)
{
return std::visit([this, registers, num_registers, signals, num_signals](auto mapping){
return writeMapping(mapping, registers, num_registers, signals, num_signals);
}, mapping);
}
int ModbusNode::writeMapping(RegisterMappingSingle const &single, uint16_t *registers, modbus_addr_t num_registers, SignalData const *signals, unsigned int num_signals)
{
assert(single.signal_index < num_signals);
single.write(signals[single.signal_index], registers, num_registers);
return 0;
}
int ModbusNode::writeMapping(RegisterMappingBlock const &block, uint16_t *registers, modbus_addr_t num_registers, SignalData const *signals, unsigned int num_signals)
{
auto begin_block = blockBegin(block);
for (auto &single : block) {
auto begin_single = blockBegin(single);
auto end_single = blockEnd(single);
assert(end_single - begin_block <= num_registers);
if (auto ret = writeMapping(single, &registers[begin_single - begin_block], end_single - begin_single, signals, num_signals))
return ret;
}
return 0;
}
int ModbusNode::_write(struct Sample *smps[], unsigned cnt)
{
for (unsigned int i = 0; i < cnt; ++i) {
auto smp = smps[i];
for (auto &mapping : out_mappings) {
assert(smp->length == num_out_signals);
if (auto ret = writeBlock(mapping, smp->data, smp->length))
return ret;
}
}
return cnt;
}
ModbusNode::ModbusNode(const uuid_t &id, const std::string &name) :
Node(id, name),
max_block_size(32),
min_block_usage(0.25),
connection_settings(),
rate(-1),
response_timeout(1),
in_mappings{},
num_in_signals(0),
out_mappings{},
num_out_signals(0),
reconnect_interval(10),
read_buffer{},
write_buffer{},
modbus_context(nullptr),
read_task(),
reconnecting(false)
{ }
ModbusNode::~ModbusNode()
{
if (modbus_context)
modbus_free(modbus_context);
}
int ModbusNode::prepare()
{
mergeMappings(in_mappings, max_block_size - 2);
mergeMappings(out_mappings, 0);
if (in.enabled) {
read_task.setRate(rate);
logger->info("Making {} Modbus calls for each read", in_mappings.size());
}
if (out.enabled)
logger->info("Making {} Modbus calls for each write", out_mappings.size());
assert(!std::holds_alternative<std::monostate>(connection_settings));
if (auto tcp = std::get_if<Tcp>(&connection_settings)) {
modbus_context = modbus_new_tcp(tcp->remote.c_str(), tcp->port);
if (tcp->unit)
modbus_set_slave(modbus_context, *tcp->unit);
}
if (auto rtu = std::get_if<Rtu>(&connection_settings)) {
modbus_context = modbus_new_rtu(
rtu->device.c_str(),
rtu->baudrate,
static_cast<char>(rtu->parity),
rtu->data_bits,
rtu->stop_bits);
modbus_set_slave(modbus_context, rtu->unit);
}
auto response_timeout_secs = (uint32_t) response_timeout;
auto response_timeout_usecs = (uint32_t) (response_timeout - (double) response_timeout_secs);
modbus_set_response_timeout(modbus_context, response_timeout_secs, response_timeout_usecs);
return Node::prepare();
}
Endianess modbus::parseEndianess(char const *str)
{
if (!strcmp(str, "little"))
return Endianess::Little;
if (!strcmp(str, "big"))
return Endianess::Big;
throw RuntimeError { "invalid endianess" };
}
Parity modbus::parseParity(char const *str)
{
if (!strcmp(str, "none"))
return Parity::None;
if (!strcmp(str, "even"))
return Parity::Even;
if (!strcmp(str, "odd"))
return Parity::Odd;
throw RuntimeError { "invalid parity" };
}
Rtu Rtu::parse(json_t* json)
{
char const *device = nullptr;
char const *parity_str = nullptr;
int baudrate = -1;
int data_bits = -1;
int stop_bits = -1;
json_error_t err;
int ret = json_unpack_ex(json, &err, 0, "{ s: s, s: s, s: i, s: i, s: i }",
"device", &device,
"parity", &parity_str,
"baudrate", &baudrate,
"data_bits", &data_bits,
"stop_bits", &stop_bits
);
if (ret)
throw ConfigError(json, err, "node-config-node-modbus-rtu");
Parity parity = parseParity(parity_str);
return Rtu { device, parity, baudrate, data_bits, stop_bits };
}
Tcp Tcp::parse(json_t* json)
{
char const *remote = nullptr;
int port = 502;
int unit_int = -1;
json_error_t err;
int ret = json_unpack_ex(json, &err, 0, "{ s: s, s?: i, s?: i }",
"remote", &remote,
"port", &port,
"unit", &unit_int
);
if (ret)
throw ConfigError(json, err, "node-config-node-modbus-tcp");
std::optional unit = unit_int >= 0 ? std::optional(unit_int) : std::nullopt;
return Tcp {
.remote = remote,
.port = (uint16_t) port,
.unit = unit,
};
}
RegisterMappingSingle RegisterMappingSingle::parse(unsigned int index, Signal::Ptr signal, json_t *json)
{
int address = -1;
int bit = -1;
int integer_registers = -1;
char const *word_endianess_str = nullptr;
char const *byte_endianess_str = nullptr;
double offset = 0.0;
double scale = 1.0;
json_error_t err;
int ret = json_unpack_ex(json, &err, 0, "{ s: i, s?: i, s?: i, s?: s, s?: s, s?: F, s?: F }",
"address", &address,
"bit", &bit,
"integer_registers", &integer_registers,
"word_endianess", &word_endianess_str,
"byte_endianess", &byte_endianess_str,
"offset", &offset,
"scale", &scale
);
if (ret)
throw ConfigError(json, err, "node-config-node-modbus-signal");
if (integer_registers != -1 && (integer_registers <= 0 || (size_t) integer_registers > MAX_REGISTERS))
throw RuntimeError { "unsupported register block size" };
Endianess word_endianess = Endianess::Big;
if (word_endianess_str)
word_endianess = parseEndianess(word_endianess_str);
Endianess byte_endianess = Endianess::Big;
if (byte_endianess_str)
byte_endianess = parseEndianess(byte_endianess_str);
auto mapping = RegisterMappingSingle { index, (modbus_addr_t) address };
if (signal->type == SignalType::FLOAT) {
if (integer_registers == -1) {
mapping.conversion = FloatToFloat {
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.offset = offset,
.scale = scale,
};
} else {
auto integer_conversion = IntegerToInteger {
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = (modbus_addr_t) integer_registers,
};
mapping.conversion = IntegerToFloat {
.integer_conversion = integer_conversion,
.offset = offset,
.scale = scale,
};
}
return mapping;
} else if (signal->type == SignalType::INTEGER) {
if (integer_registers == -1)
integer_registers = 1;
mapping.conversion = IntegerToInteger {
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = (modbus_addr_t) integer_registers,
};
} else if (signal->type == SignalType::BOOLEAN) {
if (bit < 0 || bit > 15)
throw RuntimeError { "mappings from bit to bool must be in the range 0 to 16" };
mapping.conversion = BitToBool {
.bit = (uint8_t) bit,
};
} else {
throw RuntimeError { "unsupported signal type" };
}
return mapping;
}
unsigned int ModbusNode::parseMappings(std::vector<RegisterMapping> &mappings, json_t *json)
{
assert(json_is_array(json));
size_t i;
json_t *signal_json;
auto signals = getInputSignals(false);
json_array_foreach (json, i, signal_json) {
auto signal = signals->getByIndex(i);
mappings.push_back(RegisterMappingSingle::parse(i, signal, signal_json));
}
return json_array_size(json);
}
int ModbusNode::parse(json_t *json)
{
if(auto ret = Node::parse(json))
return ret;
json_error_t err;
char const * transport = nullptr;
json_t *in_json = nullptr;
json_t *out_json = nullptr;
if (json_unpack_ex(json, &err, 0, "{ s: s, s?: F, s?: F, s?: i, s?: i, s?: F, s?: o, s?: o }",
"transport", &transport,
"response_timeout", &response_timeout,
"reconnect_interval", &reconnect_interval,
"min_block_usage", &min_block_usage,
"max_block_size", &max_block_size,
"rate", &rate,
"in", &in_json,
"out", &out_json
))
throw ConfigError(json, err, "node-config-node-modbus");
if (in.enabled && rate < 0)
throw RuntimeError { "missing polling rate for Modbus reads" };
if (!strcmp(transport, "rtu"))
connection_settings = Rtu::parse(json);
else if (!strcmp(transport, "tcp"))
connection_settings = Tcp::parse(json);
else
throw ConfigError(json, err, "node-config-node-modbus-transport");
json_t *signals_json;
if (in_json && (signals_json = json_object_get(in_json, "signals")))
num_in_signals = parseMappings(in_mappings, signals_json);
if (out_json && (signals_json = json_object_get(out_json, "signals")))
num_out_signals = parseMappings(out_mappings, signals_json);
return 0;
}
int ModbusNode::check()
{
return Node::check();
}
int ModbusNode::start()
{
if (modbus_connect(modbus_context) == -1)
throw RuntimeError { "connection failure: {}", modbus_strerror(errno) };
return Node::start();
}
int ModbusNode::stop()
{
modbus_close(modbus_context);
return Node::stop();
}
std::vector<int> ModbusNode::getPollFDs()
{
return { read_task.getFD() };
}
const std::string & ModbusNode::getDetails()
{
details = fmt::format("");
return details;
}
static char name[] = "modbus";
static char description[] = "read and write Modbus registers as a client";
static NodePlugin<ModbusNode, name, description, (int) NodeFactory::Flags::SUPPORTS_READ | (int) NodeFactory::Flags::SUPPORTS_WRITE | (int) NodeFactory::Flags::SUPPORTS_POLL> p;