1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00

some new benchmarks and tests for VILLASfpga

This commit is contained in:
Steffen Vogel 2016-06-26 15:33:19 +02:00
parent def9d0ec6d
commit a22ec73c06
3 changed files with 429 additions and 250 deletions

View file

@ -6,13 +6,20 @@
* Unauthorized copying of this file, via any medium is strictly prohibited.
**********************************************************************************/
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <sys/utsname.h>
#include <villas/utils.h>
#include <villas/hist.h>
#include <villas/log.h>
#include <villas/nodes/vfpga.h>
#include <villas/nodes/fpga.h>
#include <villas/fpga/intc.h>
#include <villas/fpga/ip.h>
#include <xilinx/xtmrctr_l.h>
#include "config.h"
#include "config-fpga.h"
@ -23,32 +30,222 @@
#define BENCH_ROUNDS 10000
#define BENCH_WARMUP 2000
/* List of available benchmarks */
enum benchmarks {
BENCH_FIFO,
BENCH_DMA_SIMPLE,
BENCH_DMA_SG,
MAX_BENCHS
};
int fpga_benchmark_datamover(struct fpga *f);
int fpga_benchmark_jitter(struct fpga *f);
int fpga_benchmark_memcpy(struct fpga *f);
int fpga_benchmark_overflows(struct fpga *f);
int fpga_benchmark_latency(struct fpga *f);
int fpga_bench(struct vfpga *f, int polling, int bench)
enum { POLLING, IRQ } mode;
enum { READ, WRITE } rw = READ;
struct utsname uts;
int fpga_benchmarks(int argc, char *argv[], struct fpga *f)
{
struct hist hist;
uint64_t start, stop;
int ret;
struct bench {
const char *name;
int (*func)(struct fpga *f);
} benchmarks[] = {
{ "datamover", fpga_benchmark_datamover },
{ "jitter", fpga_benchmark_jitter },
{ "memcpy", fpga_benchmark_memcpy },
{ "overflows", fpga_benchmark_overflows },
{ "latency", fpga_benchmark_latency }
};
hist_create(&hist, 0, 0, 1);
if (argc < 2)
error("Usage: fpga benchmark (bench)");
struct bench *bench = NULL;
for (int i = 0; i < ARRAY_LEN(benchmarks); i++) {
if (strcmp(benchmarks[i].name, argv[1]) == 0) {
bench = &benchmarks[i];
break;
}
}
int irq_fifo = polling ? -1 : f->vd.msi_efds[MSI_FIFO_MM];
int irq_dma_mm2s = polling ? -1 : f->vd.msi_efds[MSI_DMA_MM2S];
int irq_dma_s2mm = polling ? -1 : f->vd.msi_efds[MSI_DMA_S2MM];
if (bench == NULL)
error("There is no benchmark named: %s", argv[1]);
ret = uname(&uts);
if (ret)
return -1;
for (int j = 0; j < 2; j++) {
mode = j;
ret = bench->func(f);
if (ret)
error("Benchmark %s failed", bench->name);
}
return -1;
}
int fpga_benchmark_overflows(struct fpga *f)
{
struct ip *tmr;
tmr = list_lookup(&f->ips, "timer_0");
if (!tmr || !f->intc)
return -1;
XTmrCtr *xtmr = &tmr->timer.inst;
if (mode == IRQ)
intc_enable(f->intc, (1 << tmr->irq), 0);
float period = 50e-6;
int times = period * 1.5 * 1e6; // in uS
int runs = 1.0 / period;
int overflows[times];
XTmrCtr_SetOptions(xtmr, 0, XTC_INT_MODE_OPTION | XTC_EXT_COMPARE_OPTION | XTC_DOWN_COUNT_OPTION | XTC_AUTO_RELOAD_OPTION);
XTmrCtr_SetResetValue(xtmr, 0, period * AXI_HZ);
XTmrCtr_Start(xtmr, 0);
for (int p = 0; p < times; p++) {
overflows[p] = 0;
for (int i = 0; i < runs; i++) {
uint32_t tcsr;
if ((tcsr = XTmrCtr_ReadReg((uintptr_t) f->map + tmr->baseaddr, 0, XTC_TCSR_OFFSET)) & XTC_CSR_INT_OCCURED_MASK)
overflows[p]++;
if (mode == IRQ)
intc_wait(f->intc, tmr->irq, 0);
else {
while (!((tcsr = XTmrCtr_ReadReg((uintptr_t) f->map + tmr->baseaddr, 0, XTC_TCSR_OFFSET)) & XTC_CSR_INT_OCCURED_MASK)) __asm__("nop");
}
tcsr = XTmrCtr_ReadReg((uintptr_t) f->map + tmr->baseaddr, 0, XTC_TCSR_OFFSET);
XTmrCtr_WriteReg((uintptr_t) f->map + tmr->baseaddr, 0, XTC_TCSR_OFFSET, tcsr);
/* Processing */
rdtsc_sleep(p * 1000, 0);
}
}
XTmrCtr_Stop(xtmr, 0);
/* Dump results */
char fn[256];
snprintf(fn, sizeof(fn), "results/overflows_%s_%s.dat", mode == IRQ ? "irq" : "polling", uts.release);
FILE *g = fopen(fn, "w");
fprintf(g, "# period = %f\n", period);
fprintf(g, "# runs = %u\n", runs);
for (int i = 0; i < times; i++)
fprintf(g, "%u\n", overflows[i]);
fclose(g);
if (mode == IRQ)
intc_disable(f->intc, (1 << tmr->irq));
return 0;
}
int fpga_benchmark_jitter(struct fpga *f)
{
struct ip *tmr;
tmr = list_lookup(&f->ips, "timer_0");
if (!tmr || !f->intc)
return -1;
XTmrCtr *xtmr = &tmr->timer.inst;
if (mode == IRQ)
intc_enable(f->intc, (1 << tmr->irq), 0);
float period = 50e-6;
int runs = 300.0 / period;
int *hist = (int *) f->dma;
XTmrCtr_SetOptions(xtmr, 0, XTC_INT_MODE_OPTION | XTC_EXT_COMPARE_OPTION | XTC_DOWN_COUNT_OPTION | XTC_AUTO_RELOAD_OPTION);
XTmrCtr_SetResetValue(xtmr, 0, period * AXI_HZ);
XTmrCtr_Start(xtmr, 0);
uint64_t end, start = rdtscp();
for (int i = 0; i < runs; i++) {
if (mode == IRQ) {
uint64_t cnt = intc_wait(f->intc, tmr->irq, 0);
if (cnt != 1)
warn("fail");
}
else {
uint32_t tcsr;
while (!((tcsr = XTmrCtr_ReadReg((uintptr_t) f->map + tmr->baseaddr, 0, XTC_TCSR_OFFSET)) & XTC_CSR_INT_OCCURED_MASK)) __asm__("nop");
XTmrCtr_WriteReg((uintptr_t) f->map + tmr->baseaddr, 0, XTC_TCSR_OFFSET, tcsr | XTC_CSR_INT_OCCURED_MASK);
}
end = rdtscp();
hist[i] = end - start;
start = end;
}
XTmrCtr_Stop(xtmr, 0);
char fn[256];
snprintf(fn, sizeof(fn), "results/jitter_%s_%s.dat", mode == IRQ ? "irq" : "polling", uts.release);
FILE *g = fopen(fn, "w");
for (int i = 0; i < runs; i++)
fprintf(g, "%u\n", hist[i]);
fclose(g);
free(hist);
if (mode == IRQ)
intc_disable(f->intc, (1 << tmr->irq));
return 0;
}
int fpga_benchmark_latency(struct fpga *f)
{
uint64_t start, end;
if (!f->intc)
return -1;
int runs = 1000000;
int hist[runs];
intc_enable(f->intc, 0x100, mode == POLLING ? 1 : 0);
for (int i = 0; i < runs; i++) {
start = rdtscp();
XIntc_Out32((uintptr_t) f->map + f->intc->baseaddr + XIN_ISR_OFFSET, 0x100);
intc_wait(f->intc, 8, mode == POLLING ? 1 : 0);
end = rdtscp();
hist[i] = end - start;
}
char fn[256];
snprintf(fn, sizeof(fn), "results/latency_%s_%s.dat", mode == IRQ ? "irq" : "polling", uts.release);
FILE *g = fopen(fn, "w");
for (int i = 0; i < runs; i++)
fprintf(g, "%u\n", hist[i]);
fclose(g);
intc_disable(f->intc, 0x100);
return 0;
}
int fpga_benchmark_datamover(struct fpga *f)
{
#if 0
uint64_t start, stop;
char *src, *dst;
size_t len;
for (int exp = BENCH_EXP_MIN; exp < BENCH_EXP_MAX; exp++) {
size_t sz = 1 << exp;
hist_reset(&hist);
read_random(src, len);
memset(dst, 0, len);
@ -80,70 +277,40 @@ int fpga_bench(struct vfpga *f, int polling, int bench)
if (i > BENCH_WARMUP)
hist_put(&hist, stop - start);
}
hist_dump(&hist);
}
hist_destroy(&hist);
}
int fpga_bench_dm(struct vfpga *f)
{
int irq_fifo, irq_dma_mm2s, irq_dma_s2mm;
int polling = true;
int ret;
/* Loopback all datamovers */
switch_connect(&f->sw, AXIS_SWITCH_DMA_SIMPLE, AXIS_SWITCH_DMA_SIMPLE);
switch_connect(&f->sw, AXIS_SWITCH_DMA_SG, AXIS_SWITCH_DMA_SG);
switch_connect(&f->sw, AXIS_SWITCH_FIFO_MM, AXIS_SWITCH_FIFO_MM);
for (polling = 0; polling <= 1; polling++) {
for (int i = 0; i < MAX_BENCHS; i++)
bench_run(f, polling, i);
}
#endif
return 0;
}
int fpga_bench_memcpy(struct vfpga *f)
int fpga_benchmark_memcpy(struct fpga *f)
{
uint64_t start, end, total = 0;
#if 1
char *src = f->map;
char *dst = alloc(1 << 13);
char *dst = alloc(1 << 16);
#else
char *dst = f->map;
char *src = alloc(1 << 13);
read_random(src, 1 << 13);
char *src = alloc(1 << 16);
#endif
char *srcb = src;
for (int i = 0; i < 1 << 13; i++)
srcb[i] = i;
int runs = 10000;
char fn[256];
snprintf(fn, sizeof(fn), "results/bar0_%s_%s.dat", mode == IRQ ? "irq" : "polling", uts.release);
FILE *g = fopen(fn, "w");
fprintf(g, "# runs = %u\n", runs);
fprintf(g, "# bytes cycles\n");
unsigned long long runs = 10000;
fgetc(stdin);
//memcpy(dst, src, 0xFF);
for (int i = 0; i < 64; i++)
dst[i] = src[i];
fgetc(stdin);
for (int exp = 0; exp < 14; exp++) {
size_t len = 1 << exp;
size_t len = 1;
for (int i = 0; i < 16; i++) {
len = 1 << i;
uint64_t start, end, total = 0;
for (int i = 0; i < runs; i++) {
/* Clear cache */
for (char *p = src; p < src + len; p += 64)
__builtin_ia32_clflush(p);
// for (char *p = f->dma; p < src + len; p += 64)
// __builtin_ia32_clflush(p);
// for (char *p = src; p < src + len; p += 64)
// __builtin_ia32_clflush(p);
// for (char *p = dst; p < dst + len; p += 64)
// __builtin_ia32_clflush(p);
/* Start measurement */
start = rdtscp();
@ -153,7 +320,11 @@ int fpga_bench_memcpy(struct vfpga *f)
total += end - start;
}
info("avg. clk cycles for %u bytes = %u", len, total / runs);
fprintf(g, "%zu %lu\n", len, total / runs);
usleep(100000);
}
fclose(g);
return 0;
}

View file

@ -15,6 +15,7 @@
#include <sched.h>
#include <villas/log.h>
#include <villas/cfg.h>
#include <villas/timing.h>
#include <villas/utils.h>
#include <villas/nodes/fpga.h>
@ -26,15 +27,17 @@
#include "config-fpga.h"
/* Declarations */
int fpga_bench(struct fpga *f);
int fpga_tests(struct fpga *f);
int fpga_benchmarks(int argc, char *argv[], struct fpga *f);
int fpga_tests(int argc, char *argv[], struct fpga *f);
struct settings settings;
void usage(char *name)
{
printf("Usage: %s CONFIGFILE CMD [OPTIONS]\n", name);
printf(" Commands:\n");
printf(" tests Test functionality of VILLASfpga card\n");
printf(" bench Do benchmarks\n\n");
printf(" tests Test functionality of VILLASfpga card\n");
printf(" benchmarks Do benchmarks\n\n");
printf(" Options:\n");
printf(" -d Set log level\n\n");
@ -47,36 +50,25 @@ int main(int argc, char *argv[])
{
int ret;
struct fpga *fpga;
config_t config;
enum {
FPGA_TESTS,
FPGA_BENCH
} subcommand;
config_t config;
if (argc < 3)
usage(argv[0]);
if (strcmp(argv[2], "tests") == 0)
subcommand = FPGA_TESTS;
else if (strcmp(argv[2], "bench") == 0)
else if (strcmp(argv[2], "benchmarks") == 0)
subcommand = FPGA_BENCH;
else
usage(argv[0]);
/* Setup libconfig */
config_init(&config);
ret = config_read_file(&config, argv[1]);
if (ret != CONFIG_TRUE) {
error("Failed to parse configuration: %s in %s:%d",
config_error_text(&config),
config_error_file(&config) ? config_error_file(&config) : argv[1],
config_error_line(&config)
);
}
/* Parse arguments */
char c, *endptr;
while ((c = getopt (argc-1, argv+1, "d:")) != -1) {
while ((c = getopt(argc-1, argv+1, "d:")) != -1) {
switch (c) {
case 'd':
log_setlevel(strtoul(optarg, &endptr, 10), ~0);
@ -88,6 +80,12 @@ int main(int argc, char *argv[])
}
}
info("Parsing configuration");
{ INDENT
config_init(&config);
config_parse(argv[1], &config, &settings, NULL, NULL);
}
info("Initialize real-time system");
rt_init(settings.affinity, settings.priority);
@ -95,33 +93,15 @@ int main(int argc, char *argv[])
config_setting_t *cfg_root = config_root_setting(&config);
ret = fpga_init(argc, argv, cfg_root);
if (ret)
error("Failed to initialize fpga card");
error("Failed to initialize FPGA card");
fpga = fpga_get();
fpga_dump(fpga);
/* Setup scheduler */
cpu_set_t set = integer_to_cpuset(AFFINITY);
ret = sched_setaffinity(0, sizeof(set), &set);
if (ret)
serror("Failed to pin thread");
ret = sched_setscheduler(0, SCHED_FIFO, &(struct sched_param) { .sched_priority = PRIORITY });
if (ret)
serror("Failed to change scheduler");
for (int i = 0; i < fpga->vd.irqs[VFIO_PCI_MSI_IRQ_INDEX].count; i++) {
ret = kernel_irq_setaffinity(fpga->vd.msi_irqs[i], AFFINITY, NULL);
if (ret)
serror("Failed to change affinity of VFIO-MSI interrupt");
}
/* Start subcommand */
switch (subcommand) {
case FPGA_TESTS: fpga_tests(fpga); break;
case FPGA_BENCH: /*fpga_bench(fpga);*/ break;
case FPGA_TESTS: fpga_tests(argc-optind-1, argv+optind+1, fpga); break;
case FPGA_BENCH: fpga_benchmarks(argc-optind-1, argv+optind+1, fpga); break;
}
/* Shutdown */

View file

@ -12,6 +12,7 @@
#include <fcntl.h>
#include <poll.h>
#include <time.h>
#include <unistd.h>
#include <xilinx/xtmrctr.h>
#include <xilinx/xintc.h>
@ -25,13 +26,9 @@
#include <villas/fpga/ip.h>
#include <villas/fpga/intc.h>
//#include <villas/fpga/cbmodel.h>
#include "config.h"
#include "config-fpga.h"
//#include "cbuilder/cbmodel.h"
#define TEST_LEN 0x1000
#define CPU_HZ 3392389000
@ -42,9 +39,10 @@ int fpga_test_timer(struct fpga *f);
int fpga_test_fifo(struct fpga *f);
int fpga_test_dma(struct fpga *f);
int fpga_test_xsg(struct fpga *f);
int fpga_test_hls_dft(struct fpga *f);
int fpga_test_rtds_rtt(struct fpga *f);
int fpga_tests(struct fpga *f)
int fpga_tests(int argc, char *argv[], struct fpga *f)
{
int ret;
@ -57,9 +55,16 @@ int fpga_tests(struct fpga *f)
{ "FIFO", fpga_test_fifo },
{ "DMA", fpga_test_dma },
{ "XSG: multiply_add", fpga_test_xsg },
{ "RTDS: RTT Test", fpga_test_rtds_rtt }
{ "HLS: hls_dft", fpga_test_hls_dft },
{ "RTDS: tight rtt", fpga_test_rtds_rtt }
};
/* We need to overwrite the AXI4-Stream switch configuration from the
* config file. Therefore we first disable everything here. */
XAxisScr_RegUpdateDisable(&f->sw->sw.inst);
XAxisScr_MiPortDisableAll(&f->sw->sw.inst);
XAxisScr_RegUpdateEnable(&f->sw->sw.inst);
for (int i = 0; i < ARRAY_LEN(tests); i++) {
ret = tests[i].func(f);
@ -71,29 +76,29 @@ int fpga_tests(struct fpga *f)
int fpga_test_intc(struct fpga *f)
{
int ret;
uint32_t isr;
if (!f->intc)
return -1;
intc_enable(f->intc, 0xFF00);
info("ISR %#x", XIntc_In32((uintptr_t) f->map + f->intc->baseaddr + XIN_ISR_OFFSET));
info("IER %#x", XIntc_In32((uintptr_t) f->map + f->intc->baseaddr + XIN_IER_OFFSET));
info("IMR %#x", XIntc_In32((uintptr_t) f->map + f->intc->baseaddr + XIN_IMR_OFFSET));
info("MER %#x", XIntc_In32((uintptr_t) f->map + f->intc->baseaddr + XIN_MER_OFFSET));
ret = intc_enable(f->intc, 0xFF00, 0);
if (ret)
error("Failed to enable interrupt");
/* Fake IRQs in software by writing to ISR */
XIntc_Out32((uintptr_t) f->map + f->intc->baseaddr + XIN_ISR_OFFSET, 0xFF00);
/* Wait for 8 SW triggered IRQs */
for (int i = 0; i < 8; i++)
intc_wait(f, i+8);
intc_wait(f->intc, i+8, 0);
/* Check ISR if all SW IRQs have been deliverd */
isr = XIntc_In32((uintptr_t) f->map + f->intc->baseaddr + XIN_ISR_OFFSET);
intc_disable(f->intc, 0xFF00);
ret = intc_disable(f->intc, 0xFF00);
if (ret)
error("Failed to disable interrupt");
return (isr & 0xFF00) ? -1 : 0; /* ISR should get cleared by MSI_Grant_signal */
}
@ -101,6 +106,7 @@ int fpga_test_intc(struct fpga *f)
int fpga_test_xsg(struct fpga *f)
{
struct ip *xsg, *dma;
struct model_param *p;
int ret;
double factor, err = 0;
@ -111,28 +117,6 @@ int fpga_test_xsg(struct fpga *f)
if (!dma || !xsg || !dma)
return -1;
ip_dump(xsg);
config_setting_t *cfg_params, *cfg_param;
struct model_param *p;
cfg_params = config_setting_get_member(xsg->cfg, "parameters");
if (cfg_params) {
for (int i = 0; i < config_setting_length(cfg_params); i++) {
cfg_param = config_setting_get_elem(cfg_params, i);
const char *name = config_setting_name(cfg_param);
double value = config_setting_get_float(cfg_param);
p = list_lookup(&xsg->model.parameters, name);
if (!p)
cerror(cfg_param, "Model %s has no parameter named %s", xsg->name, name);
model_param_write(p, value);
info("Param '%s' updated to: %f", p->name, value);
}
}
p = list_lookup(&xsg->model.parameters, "factor");
if (!p)
error("Missing parameter 'factor' for model '%s'", xsg->name);
@ -143,8 +127,12 @@ int fpga_test_xsg(struct fpga *f)
info("Model param: factor = %f", factor);
switch_connect(f->sw, dma, xsg);
switch_connect(f->sw, xsg, dma);
ret = switch_connect(f->sw, dma, xsg);
if (ret)
error("Failed to configure switch");
ret = switch_connect(f->sw, xsg, dma);
if (ret)
error("Failed to configure switch");
float *src = (float *) f->dma;
float *dst = (float *) f->dma + TEST_LEN;
@ -158,25 +146,70 @@ int fpga_test_xsg(struct fpga *f)
for (int i = 0; i < 6; i++)
err += abs(factor * src[i] - dst[i]);
info("Error after FPGA operation: err = %f", err);
ret = switch_disconnect(f->sw, dma, xsg);
if (ret)
error("Failed to configure switch");
ret = switch_disconnect(f->sw, xsg, dma);
if (ret)
error("Failed to configure switch");
return err > 1e-3;
}
int fpga_test_hls_dft(struct fpga *f)
{
#if 0
struct ip *hls, *dma;
hls = ip_vlnv_lookup(&f->ips, NULL, "hls", NULL, NULL);
dma = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_dma", NULL);
int ret;
struct ip *hls, *rtds;
rtds = ip_vlnv_lookup(&f->ips, "acs.eonerc.rwth-aachen.de", "user", "rtds_axis", NULL);
hls = ip_vlnv_lookup(&f->ips, NULL, "hls", "hls_dft", NULL);
/* Check if required IP is available on FPGA */
if (!dma || !hls || !dma)
if (!hls || !rtds)
return -1;
ret = intc_enable(f->intc, (1 << rtds->irq), 0);
if (ret)
error("Failed to enable interrupt");
ret = switch_connect(f->sw, rtds, hls);
if (ret)
error("Failed to configure switch");
ret = switch_connect(f->sw, hls, rtds);
if (ret)
error("Failed to configure switch");
while(1) {
/* Dump RTDS AXI Stream state */
rtds_axis_dump(rtds);
sleep(1);
}
#if 0
int len = 2000;
int NSAMPLES = 400;
float src[len], dst[len];
for (int i = 0; i < len; i++) {
src[i] = 4 + 5.0 * sin(2.0 * M_PI * 1 * i / NSAMPLES) +
2.0 * sin(2.0 * M_PI * 2 * i / NSAMPLES) +
1.0 * sin(2.0 * M_PI * 5 * i / NSAMPLES) +
0.5 * sin(2.0 * M_PI * 9 * i / NSAMPLES) +
0.2 * sin(2.0 * M_PI * 15 * i / NSAMPLES);
fifo_write()
}
#endif
ret = switch_disconnect(f->sw, rtds, hls);
if (ret)
error("Failed to configure switch");
ret = switch_disconnect(f->sw, hls, rtds);
if (ret)
error("Failed to configure switch");
return 0;
}
@ -191,7 +224,13 @@ int fpga_test_fifo(struct fpga *f)
if (!fifo)
return -1;
intc_enable(f->intc, (1 << fifo->irq));
ret = intc_enable(f->intc, (1 << fifo->irq), 0);
if (ret)
error("Failed to enable interrupt");
ret = switch_connect(f->sw, fifo, fifo);
if (ret)
error("Failed to configure switch");
/* Get some random data to compare */
memset(dst, 0, sizeof(dst));
@ -199,10 +238,6 @@ int fpga_test_fifo(struct fpga *f)
if (ret)
error("Failed to get random data");
ret = switch_connect(f->sw, fifo, fifo);
if (ret)
error("Failed to configure switch");
len = fifo_write(fifo, (char *) src, sizeof(src));
if (len != sizeof(src))
error("Failed to send to FIFO");
@ -211,7 +246,13 @@ int fpga_test_fifo(struct fpga *f)
if (len != sizeof(dst))
error("Failed to read from FIFO");
intc_disable(f->intc, (1 << fifo->irq));
ret = intc_disable(f->intc, (1 << fifo->irq));
if (ret)
error("Failed to disable interrupt");
ret = switch_disconnect(f->sw, fifo, fifo);
if (ret)
error("Failed to configure switch");
/* Compare data */
return memcmp(src, dst, sizeof(src));
@ -223,28 +264,32 @@ int fpga_test_dma(struct fpga *f)
ssize_t len = 0x100;
int ret;
/* Get some random data to compare */
char *src = (char *) f->dma;
char *dst = (char *) f->dma + len;
ret = read_random(src, len);
if (ret)
error("Failed to get random data");
list_foreach(struct ip *dma, &f->ips) { INDENT
if (!ip_vlnv_match(dma, "xilinx.com", "ip", "axi_dma", NULL))
continue; /* skip non DMA IP cores */
/* Get new random data */
ret = read_random(src, len);
if (ret)
error("Failed to get random data");
int irq_mm2s = dma->irq;
int irq_s2mm = dma->irq + 1;
intc_enable(f->intc, (1 << irq_mm2s) | (1 << irq_s2mm));
ret = intc_enable(f->intc, (1 << irq_mm2s) | (1 << irq_s2mm), 0);
if (ret)
error("Failed to enable interrupt");
ret = switch_connect(f->sw, dma, dma);
if (ret)
error("Failed to configure switch");
if (dma->dma.HasSg) {
XAxiDma_Reset(&dma->dma.inst);
if (dma->dma.inst.HasSg) {
/* Init BD rings */
bram = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_bram_ctrl", NULL);
if (!bram)
@ -270,8 +315,9 @@ int fpga_test_dma(struct fpga *f)
ret = dma_write(dma, src, len);
if (ret)
error("Failed to start DMA write: %d", ret);
ret = dma_read_complete(dma, NULL, NULL);
size_t recvlen;
ret = dma_read_complete(dma, NULL, &recvlen);
if (ret)
error("Failed to complete DMA read");
@ -279,11 +325,19 @@ int fpga_test_dma(struct fpga *f)
if (ret)
error("Failed to complete DMA write");
info("recvlen = %#zx", recvlen);
ret = memcmp(src, dst, len);
info("DMA %s (%s): %s", dma->name, dma->dma.HasSg ? "sg" : "simple", ret ? RED("failed") : GRN("passed"));
info("DMA %s (%s): %s", dma->name, dma->dma.inst.HasSg ? "scatter-gather" : "simple", ret ? RED("failed") : GRN("passed"));
intc_disable(f->intc, (1 << irq_mm2s) | (1 << irq_s2mm));
ret = switch_disconnect(f->sw, dma, dma);
if (ret)
error("Failed to configure switch");
ret = intc_disable(f->intc, (1 << irq_mm2s) | (1 << irq_s2mm));
if (ret)
error("Failed to disable interrupt");
}
return ret;
@ -292,26 +346,30 @@ int fpga_test_dma(struct fpga *f)
int fpga_test_timer(struct fpga *f)
{
int ret;
struct ip *timer;
struct ip *tmr;
timer = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_timer", NULL);
if (!timer)
tmr = ip_vlnv_lookup(&f->ips, "xilinx.com", "ip", "axi_timer", NULL);
if (!tmr)
return -1;
XTmrCtr *xtmr = &tmr->timer.inst;
intc_enable(f->intc, (1 << timer->irq));
ret = intc_enable(f->intc, (1 << tmr->irq), 0);
if (ret)
error("Failed to enable interrupt");
XTmrCtr_SetOptions(&timer->timer, 0, XTC_EXT_COMPARE_OPTION | XTC_DOWN_COUNT_OPTION);
XTmrCtr_SetResetValue(&timer->timer, 0, AXI_HZ / 125);
XTmrCtr_Start(&timer->timer, 0);
XTmrCtr_SetOptions(xtmr, 0, XTC_EXT_COMPARE_OPTION | XTC_DOWN_COUNT_OPTION);
XTmrCtr_SetResetValue(xtmr, 0, AXI_HZ / 125);
XTmrCtr_Start(xtmr, 0);
struct pollfd pfd = {
.fd = f->vd.msi_efds[timer->irq],
.fd = f->vd.msi_efds[tmr->irq],
.events = POLLIN
};
ret = poll(&pfd, 1, 1000);
if (ret == 1) {
uint64_t counter = intc_wait(f, timer->irq);
uint64_t counter = intc_wait(f->intc, tmr->irq, 0);
info("Got IRQ: counter = %ju", counter);
@ -321,91 +379,61 @@ int fpga_test_timer(struct fpga *f)
warn("Counter was not 1");
}
intc_disable(f->intc, (1 << timer->irq));
intc_disable(f->intc, (1 << tmr->irq));
if (ret)
error("Failed to disable interrupt");
return -1;
}
int fpga_test_rtds_rtt(struct fpga *f)
{
#if 0
uint32_t tsc = 0;
ssize_t len;
int ret;
struct ip *dma, *rtds;
intc_enable(f->intc, (1 << MSI_DMA_MM2S) | (1 << MSI_DMA_S2MM));
rtds = ip_vlnv_lookup(&f->ips, "acs.eonerc.rwth-aachen.de", "user", "rtds_axis", NULL);
dma = list_lookup(&f->ips, "dma_1");
/* Dump RTDS AXI Stream state */
rtds_axis_dump(f->map + BASEADDR_RTDS);
/* Check if required IP is available on FPGA */
if (!dma || !rtds)
return -1;
/* Get some random data to compare */
uint32_t *data_rx = (uint32_t *) (f->dma);
uint32_t *data_tx = (uint32_t *) (f->dma + 0x1000);
ret = switch_connect(f->sw, rtds, dma);
if (ret)
error("Failed to configure switch");
ret = switch_connect(f->sw, dma, rtds);
if (ret)
error("Failed to configure switch");
/* Setup crossbar switch */
switch_connect(sw, AXIS_SWITCH_RTDS, switch_port);
switch_connect(sw, switch_port, AXIS_SWITCH_RTDS);
/* Disable blocking Overflow status */
int flags = fcntl(f->vd.msi_efds[MSI_RTDS_OVF], F_GETFL, 0);
fcntl(f->vd.msi_efds[MSI_RTDS_OVF], F_SETFL, flags | O_NONBLOCK);
int irq_fifo = f->vd.msi_efds[MSI_FIFO_MM];
int rtt2_prev, rtt2;
size_t len = 0x100;
size_t recvlen;
char *buf = f->dma;
while (1) {
#if 0 /* Wait for TS */
tsc += intc_wait(f->intc, MSI_RTDS_TS);
#else
tsc++;
#endif
#if 0 /* Check for overflow */
ovfl += intc_wait(f->intc, MSI_RTDS_OVF);
if (tsc % 20000 == 0)
warn("Missed %u timesteps", ovfl);
#endif
#if DATAMOVER == RTDS_DM_FIFO
retry: len = fifo_read(&f->fifo, (char *) data_rx, 0x1000, irq_fifo);
if (XLlFifo_RxOccupancy(&f->fifo) > 0 )
goto retry;
#elif DATAMOVER == RTDS_DM_DMA_SIMPLE
len = dma_read(&f->dma_simple, virt_to_dma(data_rx, f->dma), 0x1000, -1);//f->vd.msi_efds[MSI_DMA_S2MM]);
uint64_t start = rdtscp();
XAxiDma_IntrAckIrq(&f->dma_simple, XAXIDMA_IRQ_IOC_MASK, XAXIDMA_DEVICE_TO_DMA);
#elif DATAMOVER == RTDS_DM_DMA_SG
len = dma_read(&f->dma_sg, virt_to_dma(data_rx, f->dma), 0x1000, f->vd.msi_efds[MSI_DMA_S2MM]);
#endif
values_rx = len / sizeof(uint32_t);
for (int i = 0; i < values_tx; i++)
data_tx[i] = data_rx[i];
data_tx[3] = tsc;
ret = dma_read(dma, buf, len);
if (ret)
error("Failed to start DMA read: %d", ret);
if (data_rx[3] == 0)
tsc = 0;
ret = dma_read_complete(dma, NULL, &recvlen);
if (ret)
error("Failed to complete DMA read: %d", ret);
ret = dma_write(dma, buf, recvlen);
if (ret)
error("Failed to start DMA write: %d", ret);
int rtt = tsc - data_rx[3];
rtt2_prev = rtt2;
rtt2 = tsc - data_rx[0];
rdtsc_sleep(30000, start);
#if DATAMOVER == RTDS_DM_FIFO
len = fifo_write(&f->fifo, (char *) data_tx, sizeof(uint32_t) * values_tx, irq_fifo);
if (len != sizeof(uint32_t) * values_tx)
error("Failed to send to FIFO");
#elif DATAMOVER == RTDS_DM_DMA_SIMPLE
len = dma_write(&f->dma_simple, virt_to_dma(data_tx, f->dma), sizeof(uint32_t) * values_tx, -1);//f->vd.msi_efds[MSI_DMA_MM2S]);
XAxiDma_IntrAckIrq(&f->dma_simple, XAXIDMA_IRQ_IOC_MASK, XAXIDMA_DMA_TO_DEVICE);
#elif DATAMOVER == RTDS_DM_DMA_SG
len = dma_write(&f->dma_sg, virt_to_dma(data_tx, f->dma), sizeof(uint32_t) * values_tx, f->vd.msi_efds[MSI_DMA_MM2S]);
#endif
ret = dma_write_complete(dma, NULL, NULL);
if (ret)
error("Failed to complete DMA write: %d", ret);
}
intc_disable(f->intc, (1 << MSI_DMA_MM2S) | (1 << MSI_DMA_S2MM));
#endif
ret = switch_disconnect(f->sw, rtds, dma);
if (ret)
error("Failed to configure switch");
ret = switch_disconnect(f->sw, dma, rtds);
if (ret)
error("Failed to configure switch");
return 0;
}
}