1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00
VILLASnode/lib/nodes/infiniband.c

910 lines
26 KiB
C

/** Node type: infiniband
*
* @author Dennis Potter <dennis@dennispotter.eu>
* @copyright 2018, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <string.h>
#include <math.h>
#include <villas/nodes/infiniband.h>
#include <villas/plugin.h>
#include <villas/utils.h>
#include <villas/format_type.h>
#include <villas/memory.h>
#include <villas/memory/ib.h>
static int ib_disconnect(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
debug(LOG_IB | 1, "Starting to clean up");
rdma_disconnect(ib->ctx.id);
// Destroy QP
rdma_destroy_qp(ib->ctx.id);
debug(LOG_IB | 3, "Destroyed QP");
// Set available receive WRs and stack top to zero
ib->conn.available_recv_wrs = 0;
ib->conn.send_wc_stack.top = 0;
return ib->stopThreads;
}
static void ib_build_ibv(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Starting to build IBV components");
// Create completion queues. No completion channel!)
ib->ctx.recv_cq = ibv_create_cq(ib->ctx.id->verbs, ib->recv_cq_size, NULL, NULL, 0);
if (!ib->ctx.recv_cq)
error("Could not create receive completion queue in node %s", node_name(n));
debug(LOG_IB | 3, "Created receive Completion Queue");
ib->ctx.send_cq = ibv_create_cq(ib->ctx.id->verbs, ib->send_cq_size, NULL, NULL, 0);
if (!ib->ctx.send_cq)
error("Could not create send completion queue in node %s", node_name(n));
debug(LOG_IB | 3, "Created send Completion Queue");
// Prepare remaining Queue Pair (QP) attributes
ib->qp_init.send_cq = ib->ctx.send_cq;
ib->qp_init.recv_cq = ib->ctx.recv_cq;
// Create the actual QP
ret = rdma_create_qp(ib->ctx.id, ib->ctx.pd, &ib->qp_init);
if (ret)
error("Failed to create Queue Pair in node %s", node_name(n));
debug(LOG_IB | 3, "Created Queue Pair with %i receive and %i send elements",
ib->qp_init.cap.max_recv_wr, ib->qp_init.cap.max_send_wr);
if (ib->conn.send_inline)
info("Maximum inline size is set to %i byte", ib->qp_init.cap.max_inline_data);
}
static int ib_addr_resolved(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Successfully resolved address");
// Build all components from IB Verbs
ib_build_ibv(n);
// Resolve address
ret = rdma_resolve_route(ib->ctx.id, ib->conn.timeout);
if (ret)
error("Failed to resolve route in node %s", node_name(n));
return 0;
}
static int ib_route_resolved(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
struct rdma_conn_param cm_params;
memset(&cm_params, 0, sizeof(cm_params));
// Send connection request
ret = rdma_connect(ib->ctx.id, &cm_params);
if (ret)
error("Failed to connect in node %s", node_name(n));
debug(LOG_IB | 1, "Called rdma_connect");
return 0;
}
static int ib_connect_request(struct node *n, struct rdma_cm_id *id)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Received a connection request!");
ib->ctx.id = id;
ib_build_ibv(n);
struct rdma_conn_param cm_params;
memset(&cm_params, 0, sizeof(cm_params));
// Accept connection request
ret = rdma_accept(ib->ctx.id, &cm_params);
if (ret)
error("Failed to connect in node %s", node_name(n));
info("Successfully accepted connection request in node %s", node_name(n));
return 0;
}
int ib_reverse(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
SWAP(ib->conn.src_addr, ib->conn.dst_addr);
return 0;
}
int ib_parse(struct node *n, json_t *cfg)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
char *local = NULL;
char *remote = NULL;
const char *port_space = "RDMA_PS_TCP";
const char *poll_mode = "BUSY";
const char *qp_type = "IBV_QPT_RC";
int timeout = 1000;
int recv_cq_size = 128;
int send_cq_size = 128;
int max_send_wr = 128;
int max_recv_wr = 128;
int max_inline_data = 0;
int send_inline = 1;
int vectorize_in = 1;
int vectorize_out = 1;
int buffer_subtraction = 2;
// Parse JSON files and copy to local variables
json_t *json_in = NULL;
json_t *json_out = NULL;
json_error_t err;
ret = json_unpack_ex(cfg, &err, 0, "{s?: o, s?: o, s?: s, s?: s}",
"in", &json_in,
"out", &json_out,
"qp_type", &qp_type,
"rdma_port_space", &port_space
);
if (ret)
jerror(&err, "Failed to parse in/out json blocks");
if (json_in) {
ret = json_unpack_ex(json_in, &err, 0, "{ s?: s, s?: s, s?: i, s?: i, s?: i, s?: i}",
"address", &local,
"poll_mode", &poll_mode,
"cq_size", &recv_cq_size,
"max_wrs", &max_recv_wr,
"vectorize", &vectorize_in,
"buffer_subtraction", &buffer_subtraction
);
if (ret)
jerror(&err, "Failed to parse input configuration of node %s", node_name(n));
}
if (json_out) {
ret = json_unpack_ex(json_out, &err, 0, "{ s?: s, s?: i, s?: i, s?: i, s?: i, s?: i, s?: i,}",
"address", &remote,
"resolution_timeout", &timeout,
"cq_size", &send_cq_size,
"max_wrs", &max_send_wr,
"max_inline_data", &max_inline_data,
"send_inline", &send_inline,
"vectorize", &vectorize_out
);
if (ret)
jerror(&err, "Failed to parse output configuration of node %s", node_name(n));
ib->is_source = 1;
debug(LOG_IB | 3, "Node %s is up as source and target", node_name(n));
}
else {
ib->is_source = 0;
debug(LOG_IB | 3, "Node %s is up as target", node_name(n));
}
// Set vectorize mode. Do not print, since framework will print this information
n->in.vectorize = vectorize_in;
n->out.vectorize = vectorize_out;
// Set buffer subtraction
ib->conn.buffer_subtraction = buffer_subtraction;
debug(LOG_IB | 4, "Set buffer subtraction to %i in node %s", buffer_subtraction, node_name(n));
// Translate IP:PORT to a struct addrinfo
char* ip_adr = strtok(local, ":");
char* port = strtok(NULL, ":");
ret = getaddrinfo(ip_adr, port, NULL, &ib->conn.src_addr);
if (ret)
error("Failed to resolve local address '%s' of node %s: %s",
local, node_name(n), gai_strerror(ret));
debug(LOG_IB | 4, "Translated %s:%s to a struct addrinfo in node %s", ip_adr, port, node_name(n));
// Translate port space
if (strcmp(port_space, "RDMA_PS_IPOIB") == 0) ib->conn.port_space = RDMA_PS_IPOIB;
else if (strcmp(port_space, "RDMA_PS_TCP") == 0) ib->conn.port_space = RDMA_PS_TCP;
else if (strcmp(port_space, "RDMA_PS_UDP") == 0) ib->conn.port_space = RDMA_PS_UDP;
else if (strcmp(port_space, "RDMA_PS_IB") == 0) ib->conn.port_space = RDMA_PS_IB;
else
error("Failed to translate rdma_port_space in node %s. %s is not a valid \
port space supported by rdma_cma.h!", node_name(n), port_space);
debug(LOG_IB | 4, "Translated %s to enum rdma_port_space in node %s", port_space, node_name(n));
// Set timeout
ib->conn.timeout = timeout;
debug(LOG_IB | 4, "Set timeout to %i in node %s", timeout, node_name(n));
// Translate poll mode
if (strcmp(poll_mode, "EVENT") == 0)
ib->poll_mode = EVENT;
else if (strcmp(poll_mode, "BUSY") == 0)
ib->poll_mode = BUSY;
else
error("Failed to translate poll_mode in node %s. %s is not a valid \
poll mode!", node_name(n), poll_mode);
debug(LOG_IB | 4, "Set poll mode to %s in node %s", poll_mode, node_name(n));
// Set completion queue size
ib->recv_cq_size = recv_cq_size;
ib->send_cq_size = send_cq_size;
debug(LOG_IB | 4, "Set Completion Queue size to %i & %i (in & out) in node %s",
recv_cq_size, send_cq_size, node_name(n));
// Translate QP type
if (strcmp(qp_type, "IBV_QPT_RC") == 0) ib->qp_init.qp_type = IBV_QPT_RC;
else if (strcmp(qp_type, "IBV_QPT_UC") == 0) ib->qp_init.qp_type = IBV_QPT_UC;
else if (strcmp(qp_type, "IBV_QPT_UD") == 0) ib->qp_init.qp_type = IBV_QPT_UD;
else
error("Failed to translate qp_type in node %s. %s is not a valid \
qp_type!", node_name(n), qp_type);
debug(LOG_IB | 4, "Set Queue Pair type to %s in node %s", qp_type, node_name(n));
// Translate inline mode
ib->conn.send_inline = send_inline;
debug(LOG_IB | 4, "Set send_inline to %i in node %s", send_inline, node_name(n));
// Set max. send and receive Work Requests
ib->qp_init.cap.max_send_wr = max_send_wr;
ib->qp_init.cap.max_recv_wr = max_recv_wr;
debug(LOG_IB | 4, "Set max_send_wr and max_recv_wr in node %s to %i and %i, respectively",
node_name(n), max_send_wr, max_recv_wr);
// Set available receive Work Requests to 0
ib->conn.available_recv_wrs = 0;
// Set remaining QP attributes
ib->qp_init.cap.max_send_sge = 1;
ib->qp_init.cap.max_recv_sge = 1;
// Set number of bytes to be send inline
ib->qp_init.cap.max_inline_data = max_inline_data;
// If node will send data, set remote address
if (ib->is_source) {
// Translate address info
char* ip_adr = strtok(remote, ":");
char* port = strtok(NULL, ":");
ret = getaddrinfo(ip_adr, port, NULL, &ib->conn.dst_addr);
if (ret)
error("Failed to resolve remote address '%s' of node %s: %s",
remote, node_name(n), gai_strerror(ret));
debug(LOG_IB | 4, "Translated %s:%s to a struct addrinfo", ip_adr, port);
}
return 0;
}
int ib_check(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
info("Starting check of node %s", node_name(n));
// Check if read substraction makes sense
if (ib->conn.buffer_subtraction < 2 * n->in.vectorize)
error("The buffer substraction value must be bigger than 2 * in.vectorize");
if (ib->conn.buffer_subtraction >= ib->qp_init.cap.max_recv_wr - n->in.vectorize)
error("The buffer substraction value cannot be smaller than in.max_wrs - in.vectorize");
// Check if the set value is a power of 2, and warn the user if this is not the case
int max_send_pow = (int) pow(2, ceil(log2(ib->qp_init.cap.max_send_wr)));
int max_recv_pow = (int) pow(2, ceil(log2(ib->qp_init.cap.max_recv_wr)));
if (ib->qp_init.cap.max_send_wr != max_send_pow) {
warn("Max nr. of send WRs (%i) is not a power of 2! It will be changed to a power of 2: %i",
ib->qp_init.cap.max_send_wr, max_send_pow);
// Change it now, because otherwise errors are possible in ib_start().
ib->qp_init.cap.max_send_wr = max_send_pow;
}
if (ib->qp_init.cap.max_recv_wr != max_recv_pow) {
warn("Max nr. of recv WRs (%i) is not a power of 2! It will be changed to a power of 2: %i",
ib->qp_init.cap.max_recv_wr, max_recv_pow);
// Change it now, because otherwise errors are possible in ib_start().
ib->qp_init.cap.max_recv_wr = max_recv_pow;
}
// Check maximum size of max_recv_wr and max_send_wr
if (ib->qp_init.cap.max_send_wr > 8192)
warn("Max number of send WRs (%i) is bigger than send queue!", ib->qp_init.cap.max_send_wr);
if (ib->qp_init.cap.max_recv_wr > 8192)
warn("Max number of receive WRs (%i) is bigger than send queue!", ib->qp_init.cap.max_recv_wr);
// Warn user if he changed the default inline value
if (ib->qp_init.cap.max_inline_data != 0)
warn("You changed the default value of max_inline_data. This might influence the maximum number of outstanding Work Requests in the Queue Pair and can be a reason for the Queue Pair creation to fail");
// Check if inline mode is set to a valid value
if (ib->conn.send_inline != 0 && ib->conn.send_inline != 1)
error("send_inline has to be set to either 0 or 1! %i is not a valid value", ib->conn.send_inline);
info("Finished check of node %s", node_name(n));
return 0;
}
char * ib_print(struct node *n)
{
return 0;
}
int ib_destroy(struct node *n)
{
return 0;
}
static void ib_create_bind_id(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
// Create rdma_cm_id
ret = rdma_create_id(ib->ctx.ec, &ib->ctx.id, NULL, ib->conn.port_space);
if (ret)
error("Failed to create rdma_cm_id of node %s: %s", node_name(n), gai_strerror(ret));
debug(LOG_IB | 3, "Created rdma_cm_id");
// Bind rdma_cm_id to the HCA
ret = rdma_bind_addr(ib->ctx.id, ib->conn.src_addr->ai_addr);
if (ret)
error("Failed to bind to local device of node %s: %s",
node_name(n), gai_strerror(ret));
debug(LOG_IB | 3, "Bound rdma_cm_id to Infiniband device");
// The ID will be overwritten for the target. If the event type is
// RDMA_CM_EVENT_CONNECT_REQUEST, >then this references a new id for
// that communication.
ib->ctx.listen_id = ib->ctx.id;
}
static void ib_continue_as_listen(struct node *n, struct rdma_cm_event *event)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
warn("Trying to continue as listening node");
// Acknowledge event
rdma_ack_cm_event(event);
// Destroy ID
rdma_destroy_id(ib->ctx.listen_id);
// Create rdma_cm_id and bind to device
ib_create_bind_id(n);
// Listen to id for events
ret = rdma_listen(ib->ctx.listen_id, 10);
if (ret)
error("Failed to listen to rdma_cm_id on node %s", node_name(n));
// Node is not a source (and will not send data
ib->is_source = 0;
info("Node %s is set to listening mode", node_name(n));
}
static void sigHandler(int signo)
{
info("Node was already disconnected. Exiting thread with pthread_exit()");
pthread_exit(NULL);
}
void * ib_rdma_cm_event_thread(void *n)
{
struct node *node = (struct node *) n;
struct infiniband *ib = (struct infiniband *) node->_vd;
struct rdma_cm_event *event;
struct sigaction sa;
int ret = 0;
// Register signal handler, in case event channel blocks and we can't exit thread
sa.sa_handler = sigHandler;
sigaction(SIGUSR1, &sa, NULL);
debug(LOG_IB | 1, "Started rdma_cm_event thread of node %s", node_name(node));
// Wait until node is completely started
while (node->state != STATE_STARTED);
// Monitor event channel
while (rdma_get_cm_event(ib->ctx.ec, &event) == 0) {
switch(event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_ADDR_RESOLVED");
ret = ib_addr_resolved(n);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_ADDR_ERROR");
warn("Address resolution (rdma_resolve_addr) failed!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_ROUTE_RESOLVED");
ret = ib_route_resolved(n);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_ROUTE_ERROR");
warn("Route resolution (rdma_resovle_route) failed!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_CONNECT_REQUEST:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_CONNECT_REQUEST");
ret = ib_connect_request(n, event->id);
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_CONNECT_ERROR");
warn("An error has occurred trying to establish a connection!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_REJECTED:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_REJECTED");
warn("Connection request or response was rejected by the remote end point!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_ESTABLISHED:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_ESTABLISHED");
node->state = STATE_CONNECTED;
info("Connection established in node %s", node_name(n));
break;
case RDMA_CM_EVENT_DISCONNECTED:
debug(LOG_IB | 2, "Received RDMA_CM_EVENT_DISCONNECTED");
node->state = STATE_STARTED;
ret = ib_disconnect(n);
if (!ret)
info("Host disconnected. Ready to accept new connections.");
break;
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
break;
default:
error("Unknown event occurred: %u", event->event);
}
rdma_ack_cm_event(event);
if (ret)
break;
}
return NULL;
}
int ib_start(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Started ib_start");
// Create event channel
ib->ctx.ec = rdma_create_event_channel();
if (!ib->ctx.ec)
error("Failed to create event channel in node %s!", node_name(n));
debug(LOG_IB | 3, "Created event channel");
// Create rdma_cm_id and bind to device
ib_create_bind_id(n);
// Initialize send Work Completion stack
ib->conn.send_wc_stack.top = 0;
ib->conn.send_wc_stack.array = alloc(ib->qp_init.cap.max_recv_wr * sizeof(uint64_t) );
debug(LOG_IB | 3, "Initialized Work Completion Stack");
// Resolve address or listen to rdma_cm_id
if (ib->is_source) {
// Resolve address
ret = rdma_resolve_addr(ib->ctx.id, NULL, ib->conn.dst_addr->ai_addr, ib->conn.timeout);
if (ret)
error("Failed to resolve remote address after %ims of node %s: %s",
ib->conn.timeout, node_name(n), gai_strerror(ret));
}
else {
// Listen on rdma_cm_id for events
ret = rdma_listen(ib->ctx.listen_id, 10);
if (ret)
error("Failed to listen to rdma_cm_id on node %s", node_name(n));
debug(LOG_IB | 3, "Started to listen to rdma_cm_id");
}
//Allocate protection domain
ib->ctx.pd = ibv_alloc_pd(ib->ctx.id->verbs);
if (!ib->ctx.pd)
error("Could not allocate protection domain in node %s", node_name(n));
debug(LOG_IB | 3, "Allocated Protection Domain");
// Several events should occur on the event channel, to make
// sure the nodes are succesfully connected.
debug(LOG_IB | 1, "Starting to monitor events on rdma_cm_id");
//Create thread to monitor rdma_cm_event channel
ret = pthread_create(&ib->conn.rdma_cm_event_thread, NULL, ib_rdma_cm_event_thread, n);
if (ret)
error("Failed to create thread to monitor rdma_cm events in node %s: %s",
node_name(n), gai_strerror(ret));
return 0;
}
int ib_stop(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Called ib_stop");
ib->stopThreads = 1;
// Call RDMA disconnect function
// Will flush all outstanding WRs to the Completion Queue and
// will call RDMA_CM_EVENT_DISCONNECTED if that is done.
if (n->state == STATE_CONNECTED) {
ret = rdma_disconnect(ib->ctx.id);
if (ret)
error("Error while calling rdma_disconnect in node %s: %s",
node_name(n), gai_strerror(ret));
debug(LOG_IB | 3, "Called rdma_disconnect");
}
else {
// Since cannot use an event to unblock rdma_cm_get_event, we send
// SIGUSR1 to the thread and kill it.
pthread_kill(ib->conn.rdma_cm_event_thread, SIGUSR1);
debug(LOG_IB | 3, "Called pthread_kill()");
}
info("Disconnecting... Waiting for threads to join.");
// Wait for event thread to join
ret = pthread_join(ib->conn.rdma_cm_event_thread, NULL);
if (ret)
error("Error while joining rdma_cm_event_thread in node %s: %i", node_name(n), ret);
debug(LOG_IB | 3, "Joined rdma_cm_event_thread");
// Destroy RDMA CM ID
rdma_destroy_id(ib->ctx.id);
debug(LOG_IB | 3, "Destroyed rdma_cm_id");
// Dealloc Protection Domain
ibv_dealloc_pd(ib->ctx.pd);
debug(LOG_IB | 3, "Destroyed protection domain");
// Destroy event channel
rdma_destroy_event_channel(ib->ctx.ec);
debug(LOG_IB | 3, "Destroyed event channel");
info("Successfully stopped %s", node_name(n));
return 0;
}
int ib_read(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_wc wc[cnt];
struct ibv_recv_wr wr[cnt], *bad_wr = NULL;
struct ibv_sge sge[cnt];
struct ibv_mr *mr;
int ret = 0, wcs = 0, read_values = 0, max_wr_post;
debug(LOG_IB | 15, "ib_read is called");
if (n->state == STATE_CONNECTED) {
max_wr_post = cnt;
// Poll Completion Queue
// If we've already posted enough receive WRs, try to pull cnt
if (ib->conn.available_recv_wrs >= (ib->qp_init.cap.max_recv_wr - ib->conn.buffer_subtraction) ) {
while(1) {
wcs = ibv_poll_cq(ib->ctx.recv_cq, cnt, wc);
if (wcs) {
debug(LOG_IB | 10, "Received %i Work Completions", wcs);
read_values = wcs; // Value to return
max_wr_post = wcs; // Make space free in smps[]
break;
}
}
// All samples (wcs * received + unposted) should be released. Let
// *release be equal to allocated.
//
// This is set in the framework, before this function was called
}
else {
ib->conn.available_recv_wrs += max_wr_post;
*release = 0; // While we fill the receive queue, we always use all samples
}
// Get Memory Region
mr = memory_ib_get_mr(smps[0]);
for (int i = 0; i < max_wr_post; i++) {
// Prepare receive Scatter/Gather element
sge[i].addr = (uint64_t) &smps[i]->data;
sge[i].length = SAMPLE_DATA_LEN(DEFAULT_SAMPLELEN);
sge[i].lkey = mr->lkey;
// Prepare a receive Work Request
wr[i].wr_id = (uintptr_t) smps[i];
wr[i].next = &wr[i+1];
wr[i].sg_list = &sge[i];
wr[i].num_sge = 1;
}
wr[max_wr_post-1].next = NULL;
debug(LOG_IB | 5, "Prepared %i new receive Work Requests", max_wr_post);
debug(LOG_IB | 5, "%i receive Work Requests in Receive Queue", ib->conn.available_recv_wrs);
// Post list of Work Requests
ret = ibv_post_recv(ib->ctx.id->qp, &wr[0], &bad_wr);
if (ret)
error("Was unable to post receive WR in node %s: %i, bad WR ID: 0x%lx",
node_name(n), ret, bad_wr->wr_id);
debug(LOG_IB | 10, "Succesfully posted receive Work Requests");
// Doesn't start, if wcs == 0
for (int j = 0; j < wcs; j++) {
if ( !( (wc[j].opcode & IBV_WC_RECV) && wc[j].status == IBV_WC_SUCCESS) )
read_values--;
if (wc[j].status == IBV_WC_WR_FLUSH_ERR)
debug(LOG_IB | 5, "Received IBV_WC_WR_FLUSH_ERR (ib_read). Ignore it.");
else if (wc[j].status != IBV_WC_SUCCESS)
warn("Work Completion status was not IBV_WC_SUCCES in node %s: %i",
node_name(n), wc[j].status);
smps[j] = (struct sample *) (wc[j].wr_id);
smps[j]->length = wc[j].byte_len / sizeof(double);
}
}
return read_values;
}
int ib_write(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_send_wr wr[cnt], *bad_wr = NULL;
struct ibv_sge sge[cnt];
struct ibv_wc wc[cnt];
struct ibv_mr *mr;
int ret;
int sent = 0; //Used for first loop: prepare work requests to post to send queue
debug(LOG_IB | 10, "ib_write is called");
*release = 0;
if (n->state == STATE_CONNECTED) {
// First, write
// Get Memory Region
mr = memory_ib_get_mr(smps[0]);
for (sent = 0; sent < cnt; sent++) {
// Set Scatter/Gather element to data of sample
sge[sent].addr = (uint64_t) &smps[sent]->data;
sge[sent].length = smps[sent]->length*sizeof(double);
sge[sent].lkey = mr->lkey;
// Check if data can be send inline
int send_inline = (sge[sent].length < ib->qp_init.cap.max_inline_data) ?
ib->conn.send_inline : 0;
debug(LOG_IB | 10, "Sample will be send inline [0/1]: %i", send_inline);
// Set Send Work Request
wr[sent].wr_id = send_inline ? 0 : (uintptr_t) smps[sent]; // This way the sample can be release in WC
wr[sent].sg_list = &sge[sent];
wr[sent].num_sge = 1;
wr[sent].next = &wr[sent+1];
wr[sent].send_flags = IBV_SEND_SIGNALED | (send_inline << 3);
wr[sent].imm_data = htonl(0); //ToDo: set this to a useful value
wr[sent].opcode = IBV_WR_SEND_WITH_IMM;
}
debug(LOG_IB | 10, "Prepared %i send Work Requests", cnt);
wr[cnt-1].next = NULL;
// Send linked list of Work Requests
ret = ibv_post_send(ib->ctx.id->qp, wr, &bad_wr);
debug(LOG_IB | 4, "Posted send Work Requests");
// Reorder list. Place inline and unposted samples to the top
// m will always be equal or smaller than *release
for (int m = 0; m < cnt; m++) {
// We can't use wr_id as identifier, since it is 0 for inline
// elements
if (ret && (wr[m].sg_list == bad_wr->sg_list)) {
// The remaining work requests will be bad. Ripple through list
// and prepare them to be released
debug(LOG_IB | 4, "Bad WR occured with ID: 0x%lx and S/G address: 0x%px: %i",
bad_wr->wr_id, bad_wr->sg_list, ret);
while (1) {
smps[*release] = smps[m];
(*release)++; // Increment number of samples to be released
sent--; // Decrement the number of succesfully posted elements
if (++m == cnt) break;
}
}
else if (wr[m].send_flags & IBV_SEND_INLINE) {
smps[*release] = smps[m];
(*release)++;
}
}
debug(LOG_IB | 4, "%i samples will be released", *release);
// Always poll cnt items from Receive Queue. If there is not enough space in
// smps, we temporarily save it on a stack
ret = ibv_poll_cq(ib->ctx.send_cq, cnt, wc);
for (int i = 0; i < ret; i++) {
if (wc[i].status != IBV_WC_SUCCESS && wc[i].status != IBV_WC_WR_FLUSH_ERR)
warn("Work Completion status was not IBV_WC_SUCCES in node %s: %i",
node_name(n), wc[i].status);
// Release only samples which were not send inline
if (wc[i].wr_id) {
if (cnt - *release > 0) {
smps[*release] = (struct sample *) (wc[i].wr_id);
(*release)++;
}
else {
ib->conn.send_wc_stack.array[ib->conn.send_wc_stack.top] = wc[i].wr_id;
ib->conn.send_wc_stack.top++;
}
}
}
// Check if we still have some space and try to get rid of some addresses on our stack
if (ib->conn.send_wc_stack.top > 0) {
int empty_smps = cnt - *release;
for (int i = 0; i < empty_smps; i++) {
ib->conn.send_wc_stack.top--;
smps[*release] = (struct sample *) ib->conn.send_wc_stack.array[ib->conn.send_wc_stack.top];
(*release)++;
if(ib->conn.send_wc_stack.top == 0) break;
}
}
}
return sent;
}
int ib_fd(struct node *n)
{
return 0;
}
static struct plugin p = {
.name = "infiniband",
.description = "Infiniband interface (libibverbs, librdmacm)",
.type = PLUGIN_TYPE_NODE,
.node = {
.vectorize = 0,
.size = sizeof(struct infiniband),
.reverse = ib_reverse,
.parse = ib_parse,
.check = ib_check,
.print = ib_print,
.start = ib_start,
.destroy = ib_destroy,
.stop = ib_stop,
.read = ib_read,
.write = ib_write,
.fd = ib_fd,
.memory_type = memory_ib
}
};
REGISTER_PLUGIN(&p)
LIST_INIT_STATIC(&p.node.instances)