1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00
VILLASnode/lib/nodes/modbus.cpp
Steffen Vogel 02a2aa4f94 Apply clang-format changes
Signed-off-by: Steffen Vogel <steffen.vogel@opal-rt.com>
2023-09-08 11:37:42 +02:00

914 lines
28 KiB
C++

/* A Modbus node-type supporting RTU and TCP transports.
*
* The modbus communication using the libmodbus library is fairly simple.
*
* 1. Create a modbus_t modbus_context from the connection_settings.
* 2. Call modbus_connect to create a connection to a server.
* 3. Use modbus_read_registers/modbus_write_registers to read/write values.
*
* The complicated part is the configuration parsing, especially the mapping
* from signals to registers. We try to group as many registers as we can
* together to query them using a single modbus command. The general idea is:
*
* 1. Create a simple mapping for all signal specifications in the parse() function.
* 2. Sort all mappings by the range of registers the need.
* 3. Merge mappings that sit next to each other into larger groups until either ...
* - ... the group is larger than "max_block_size".
* - ... the ration of needed registers to queried registers falls below
* "min_block_usage". So we cap the amount of unecessary data transmitted.
*
* The merging process is further complicated by the possibility to map bits from
* a register to their own signals. We don't generally want to allow mapping the
* same register multiple times, except for the case of bit mappings.
*
* While a general overlap between any two mappings is considered an error, the
* case of overlapping bit mappings is detected by hasOverlappingBitMapping and
* handled in blockDistance and compareBlockAddress.
*
* - The special case in compareBlockAddress makes bit mappings of the same register
* reside next to each other after sorting the mappings.
* - The special case in blockDistance makes causes the bit mappings to be grouped
* first, before any adjacent registers.
*
* Author: Philipp Jungkamp <philipp.jungkamp@opal-rt.com>
* SPDX-FileCopyrightText: 2023 OPAL-RT Germany GmbH
* SPDX-License-Identifier: Apache-2.0
*/
#include <atomic>
#include <chrono>
#include <fmt/format.h>
#include <villas/exceptions.hpp>
#include <villas/node_compat.hpp>
#include <villas/nodes/modbus.hpp>
#include <villas/sample.hpp>
#include <villas/super_node.hpp>
#include <villas/utils.hpp>
using namespace villas;
using namespace villas::node;
using namespace villas::node::modbus;
using namespace villas::utils;
int64_t
RegisterMappingSingle::IntegerToInteger::read(uint16_t const *registers) const {
int64_t integer = 0;
auto ptr = word_endianess == Endianess::Big ? registers + num_registers - 1
: registers;
for (size_t i = 0; i < num_registers; ++i) {
integer <<= sizeof(uint16_t) * 8;
if (byte_endianess == Endianess::Big)
integer |= (int64_t)*ptr;
else
integer |= (int64_t)byteswap(*ptr);
if (word_endianess == Endianess::Big)
--ptr;
else
++ptr;
}
return integer;
}
void RegisterMappingSingle::IntegerToInteger::write(int64_t integer,
uint16_t *registers) const {
auto ptr = word_endianess == Endianess::Big ? registers
: registers + num_registers - 1;
for (size_t i = 0; i < num_registers; ++i) {
if (byte_endianess == Endianess::Big)
*ptr = (uint16_t)integer;
else
*ptr = byteswap((uint16_t)integer);
if (word_endianess == Endianess::Big)
++ptr;
else
--ptr;
integer >>= sizeof(uint16_t) * 8;
}
}
double
RegisterMappingSingle::IntegerToFloat::read(uint16_t const *registers) const {
int64_t integer = integer_conversion.read(registers);
return integer * scale + offset;
}
void RegisterMappingSingle::IntegerToFloat::write(double d,
uint16_t *registers) const {
int64_t integer = (d - offset) / scale;
integer_conversion.write(integer, registers);
}
double
RegisterMappingSingle::FloatToFloat::read(uint16_t const *registers) const {
static_assert(sizeof(float) == sizeof(uint32_t));
auto const conversion = IntegerToInteger{
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = 2,
};
union {
uint32_t i;
float f;
} value;
value.i = (uint32_t)conversion.read(registers);
return value.f * scale + offset;
}
void RegisterMappingSingle::FloatToFloat::write(double d,
uint16_t *registers) const {
static_assert(sizeof(float) == sizeof(uint32_t));
auto const conversion = IntegerToInteger{
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = 2,
};
union {
uint32_t i;
float f;
} value;
value.f = (d - offset) / scale;
conversion.write((int64_t)value.i, registers);
}
bool RegisterMappingSingle::BitToBool::read(uint16_t reg) const {
return (reg >> bit) & 1;
}
RegisterMappingSingle::RegisterMappingSingle(unsigned int signal_index,
modbus_addr_t address)
: conversion(IntegerToInteger{
.word_endianess = Endianess::Big,
.byte_endianess = Endianess::Big,
.num_registers = 1,
}),
signal_index(signal_index), address(address) {}
SignalData RegisterMappingSingle::read(uint16_t const *registers,
modbus_addr_t length) const {
SignalData data;
if (num_registers() != length)
throw RuntimeError{"reading from invalid register range"};
if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
data.i = i2i->read(registers);
else if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
data.f = i2f->read(registers);
else if (auto f2f = std::get_if<FloatToFloat>(&conversion))
data.f = f2f->read(registers);
else if (auto b2b = std::get_if<BitToBool>(&conversion))
data.b = b2b->read(*registers);
else
throw RuntimeError{"read unsupported"};
return data;
}
void RegisterMappingSingle::write(SignalData data, uint16_t *registers,
modbus_addr_t length) const {
if (num_registers() != length)
throw RuntimeError{"writing to invalid register range"};
if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
i2i->write(data.i, registers);
else if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
i2f->write(data.f, registers);
else if (auto f2f = std::get_if<FloatToFloat>(&conversion))
f2f->write(data.f, registers);
else
throw RuntimeError{"write unsupported"};
}
modbus_addr_t RegisterMappingSingle::num_registers() const {
if (auto i2i = std::get_if<IntegerToInteger>(&conversion))
return i2i->num_registers;
if (auto i2f = std::get_if<IntegerToFloat>(&conversion))
return i2f->integer_conversion.num_registers;
if (std::holds_alternative<FloatToFloat>(conversion))
return 2;
if (std::holds_alternative<BitToBool>(conversion))
return 1;
throw RuntimeError{"unreachable"};
}
uint16_t modbus::byteswap(uint16_t i) {
uint8_t low = (i & 0x00FF);
uint8_t high = (i & 0xFF00) >> 8;
return (low << 8) | high;
}
modbus_addr_t modbus::blockBegin(RegisterMappingSingle const &single) {
return single.address;
}
modbus_addr_t modbus::blockBegin(RegisterMappingBlock const &block) {
assert(!block.empty());
return blockBegin(block.front());
}
modbus_addr_t modbus::blockBegin(RegisterMapping const &mapping) {
return std::visit([](auto &v) { return blockBegin(v); }, mapping);
}
modbus_addr_t modbus::blockEnd(RegisterMappingSingle const &single) {
return single.address + single.num_registers();
}
modbus_addr_t modbus::blockEnd(RegisterMappingBlock const &block) {
assert(!block.empty());
return blockEnd(block.back());
}
modbus_addr_t modbus::blockEnd(RegisterMapping const &mapping) {
return std::visit([](auto &v) { return blockEnd(v); }, mapping);
}
modbus_addr_t modbus::mappedRegisters(RegisterMappingSingle const &single) {
return single.num_registers();
}
modbus_addr_t modbus::mappedRegisters(RegisterMappingBlock const &block) {
auto mapped = 0;
modbus_addr_t last_address = -1;
for (auto &single : block) {
if (single.address != last_address)
mapped += single.num_registers();
last_address = single.address;
}
return mapped;
}
modbus_addr_t modbus::mappedRegisters(RegisterMapping const &mapping) {
return std::visit([](auto &v) { return mappedRegisters(v); }, mapping);
}
modbus_addrdiff_t modbus::blockDistance(RegisterMapping const &lhs,
RegisterMapping const &rhs) {
if (blockBegin(rhs) >= blockEnd(lhs))
return (modbus_addrdiff_t)blockBegin(rhs) - blockEnd(lhs);
if (blockBegin(lhs) >= blockEnd(rhs))
return (modbus_addrdiff_t)blockBegin(lhs) - blockEnd(rhs);
if (hasOverlappingBitMapping(lhs, rhs))
return -1;
throw RuntimeError{"overlapping mappings"};
}
bool modbus::hasOverlappingBitMapping(RegisterMapping const &lhs,
RegisterMapping const &rhs) {
// Only check if there is exactly 1 register of overlap.
if (blockEnd(lhs) - blockBegin(rhs) != 1 &&
blockEnd(rhs) - blockBegin(lhs) != 1)
return false;
// Assume that lhs is at a lower address than rhs.
if (blockBegin(rhs) < blockBegin(lhs) || blockEnd(rhs) < blockEnd(lhs))
return hasOverlappingBitMapping(rhs, lhs);
// Get the last mapping from the lhs block.
RegisterMappingSingle const *lhs_back = nullptr;
if (auto single = std::get_if<RegisterMappingSingle>(&lhs))
lhs_back = single;
else if (auto block = std::get_if<RegisterMappingBlock>(&lhs))
lhs_back = &block->back();
else
return false;
// We are only interested in bit mappings.
if (!std::holds_alternative<RegisterMappingSingle::BitToBool>(
lhs_back->conversion))
return false;
// Get the first mapping from the rhs block.
RegisterMappingSingle const *rhs_front = nullptr;
if (auto single = std::get_if<RegisterMappingSingle>(&rhs))
rhs_front = single;
else if (auto block = std::get_if<RegisterMappingBlock>(&rhs))
rhs_front = &block->front();
else
return false;
// We are only interested in bit mappings.
if (!std::holds_alternative<RegisterMappingSingle::BitToBool>(
rhs_front->conversion))
return false;
// The last register of lhs and the first register of rhs overlap and are both bit mappings.
return true;
}
bool modbus::compareBlockAddress(RegisterMapping const &lhs,
RegisterMapping const &rhs) {
if (blockBegin(rhs) >= blockEnd(lhs))
return true;
if (blockBegin(lhs) >= blockEnd(rhs))
return false;
if (hasOverlappingBitMapping(lhs, rhs))
return false;
throw RuntimeError{"overlapping mappings"};
}
bool ModbusNode::isReconnecting() { return reconnecting.load(); }
void ModbusNode::reconnect() {
if (reconnecting.exchange(true))
return;
logger->error("No connection to the Modbus server. Reconnecting...");
std::thread([this]() {
auto start = std::chrono::steady_clock::now();
if (modbus_connect(modbus_context) == -1) {
logger->error("reconnect failure: ", modbus_strerror(errno));
std::this_thread::sleep_until(
start + std::chrono::duration<double>(reconnect_interval));
}
reconnecting.store(false);
}).detach();
}
void ModbusNode::mergeMappingInplace(RegisterMapping &lhs,
RegisterMappingBlock const &rhs) {
if (auto lhs_single = std::get_if<RegisterMappingSingle>(&lhs))
lhs = RegisterMappingBlock{*lhs_single};
auto &block = std::get<RegisterMappingBlock>(lhs);
block.reserve(blockEnd(rhs) - blockBegin(lhs));
std::copy(std::begin(rhs), std::end(rhs), std::back_inserter(block));
}
void ModbusNode::mergeMappingInplace(RegisterMapping &lhs,
RegisterMappingSingle const &rhs) {
if (auto lhs_single = std::get_if<RegisterMappingSingle>(&lhs))
lhs = RegisterMappingBlock{*lhs_single};
auto &block = std::get<RegisterMappingBlock>(lhs);
block.push_back(rhs);
}
bool ModbusNode::tryMergeMappingInplace(RegisterMapping &lhs,
RegisterMapping const &rhs) {
auto block_size = blockEnd(rhs) - blockBegin(lhs);
if (block_size >= max_block_size)
return false;
auto block_usage =
(mappedRegisters(lhs) + mappedRegisters(rhs)) / (float)block_size;
if (block_usage < min_block_usage)
return false;
std::visit([&lhs](auto const &rhs) { mergeMappingInplace(lhs, rhs); }, rhs);
return true;
}
void ModbusNode::mergeMappings(std::vector<RegisterMapping> &mappings,
modbus_addrdiff_t max_block_distance) {
if (std::size(mappings) < 2)
return;
// Sort all mappings by their block address.
std::sort(std::begin(mappings), std::end(mappings), compareBlockAddress);
// Calculate the distances. (number of unused registers inbetween mappings)
auto distances = std::vector<int>();
distances.reserve(std::size(mappings));
for (size_t i = 1; i < std::size(mappings); i++)
distances.push_back(blockDistance(mappings[i - 1], mappings[i]));
for (;;) {
// Try to group the mappings closest to each other first.
auto min_distance =
std::min_element(std::begin(distances), std::end(distances));
// The closest distance is too far to merge, abort the merging process.
if (min_distance == std::end(distances) ||
*min_distance >= max_block_distance)
break;
// Find the mappings to the left and right of the minimum distance.
auto i = std::distance(std::begin(distances), min_distance);
auto left_mapping = std::next(std::begin(mappings), i);
auto right_mapping = std::next(std::begin(mappings), i + 1);
if (tryMergeMappingInplace(*left_mapping, *right_mapping)) {
// Remove the right mapping and the distance
// if it could be merged into the left mapping.
mappings.erase(right_mapping);
distances.erase(min_distance);
} else {
// Set the distance to a value, so that it won't be retried.
*min_distance = max_block_distance;
}
}
}
int ModbusNode::readBlock(RegisterMapping const &mapping, SignalData *data,
size_t size) {
if (isReconnecting())
return -1;
auto address = blockBegin(mapping);
auto block_size = blockEnd(mapping) - address;
read_buffer.resize(block_size);
if (modbus_read_registers(modbus_context, address, block_size,
read_buffer.data()) == -1) {
logger->error("read registers failure: ", modbus_strerror(errno));
reconnect();
return -1;
}
return readMapping(mapping, read_buffer.data(), read_buffer.size(), data,
size);
}
int ModbusNode::readMapping(RegisterMapping const &mapping,
uint16_t const *registers,
modbus_addr_t num_registers, SignalData *signals,
unsigned int num_signals) {
return std::visit(
[this, registers, num_registers, signals, num_signals](auto mapping) {
return readMapping(mapping, registers, num_registers, signals,
num_signals);
},
mapping);
}
int ModbusNode::readMapping(RegisterMappingSingle const &single,
uint16_t const *registers,
modbus_addr_t num_registers, SignalData *signals,
unsigned int num_signals) {
auto signal_data = single.read(registers, num_registers);
assert(single.signal_index < num_signals);
signals[single.signal_index] = signal_data;
return 0;
}
int ModbusNode::readMapping(RegisterMappingBlock const &block,
uint16_t const *registers,
modbus_addr_t num_registers, SignalData *signals,
unsigned int num_signals) {
auto begin_block = blockBegin(block);
for (auto &single : block) {
auto begin_single = blockBegin(single);
auto end_single = blockEnd(single);
assert(end_single - begin_block <= num_registers);
if (auto ret = readMapping(single, &registers[begin_single - begin_block],
end_single - begin_single, signals, num_signals))
return ret;
}
return 0;
}
int ModbusNode::_read(struct Sample *smps[], unsigned cnt) {
read_task.wait();
for (unsigned int i = 0; i < cnt; ++i) {
auto smp = smps[i];
smp->length = num_in_signals;
smp->flags |= (int)SampleFlags::HAS_DATA;
assert(smp->length <= smp->capacity);
for (auto &mapping : in_mappings) {
if (auto ret = readBlock(mapping, smp->data, smp->length))
return ret;
}
}
return cnt;
}
int ModbusNode::writeBlock(RegisterMapping const &mapping,
SignalData const *data, size_t size) {
if (isReconnecting())
return -1;
auto address = blockBegin(mapping);
auto block_size = blockEnd(mapping) - address;
write_buffer.resize(block_size);
if (auto ret = writeMapping(mapping, write_buffer.data(), write_buffer.size(),
data, size))
return ret;
if (modbus_write_registers(modbus_context, address, block_size,
write_buffer.data()) == -1) {
logger->error("write registers failure: ", modbus_strerror(errno));
reconnect();
return -1;
}
return 0;
}
int ModbusNode::writeMapping(RegisterMapping const &mapping,
uint16_t *registers, modbus_addr_t num_registers,
SignalData const *signals,
unsigned int num_signals) {
return std::visit(
[this, registers, num_registers, signals, num_signals](auto mapping) {
return writeMapping(mapping, registers, num_registers, signals,
num_signals);
},
mapping);
}
int ModbusNode::writeMapping(RegisterMappingSingle const &single,
uint16_t *registers, modbus_addr_t num_registers,
SignalData const *signals,
unsigned int num_signals) {
assert(single.signal_index < num_signals);
single.write(signals[single.signal_index], registers, num_registers);
return 0;
}
int ModbusNode::writeMapping(RegisterMappingBlock const &block,
uint16_t *registers, modbus_addr_t num_registers,
SignalData const *signals,
unsigned int num_signals) {
auto begin_block = blockBegin(block);
for (auto &single : block) {
auto begin_single = blockBegin(single);
auto end_single = blockEnd(single);
assert(end_single - begin_block <= num_registers);
if (auto ret =
writeMapping(single, &registers[begin_single - begin_block],
end_single - begin_single, signals, num_signals))
return ret;
}
return 0;
}
int ModbusNode::_write(struct Sample *smps[], unsigned cnt) {
for (unsigned int i = 0; i < cnt; ++i) {
auto smp = smps[i];
assert(smp->length == num_out_signals);
for (auto &mapping : out_mappings) {
if (auto ret = writeBlock(mapping, smp->data, smp->length))
return ret;
}
}
return cnt;
}
ModbusNode::ModbusNode(const uuid_t &id, const std::string &name)
: Node(id, name), max_block_size(32), min_block_usage(0.25),
connection_settings(), rate(-1), response_timeout(1), in_mappings{},
num_in_signals(0), out_mappings{}, num_out_signals(0),
reconnect_interval(10), read_buffer{}, write_buffer{},
modbus_context(nullptr), read_task(), reconnecting(false) {}
ModbusNode::~ModbusNode() {
if (modbus_context)
modbus_free(modbus_context);
}
int ModbusNode::prepare() {
mergeMappings(in_mappings, max_block_size - 2);
mergeMappings(out_mappings, 0);
if (in.enabled) {
read_task.setRate(rate);
logger->info("Making {} Modbus calls for each read", in_mappings.size());
}
if (out.enabled)
logger->info("Making {} Modbus calls for each write", out_mappings.size());
assert(!std::holds_alternative<std::monostate>(connection_settings));
if (auto tcp = std::get_if<Tcp>(&connection_settings)) {
modbus_context = modbus_new_tcp(tcp->remote.c_str(), tcp->port);
if (tcp->unit)
modbus_set_slave(modbus_context, *tcp->unit);
}
if (auto rtu = std::get_if<Rtu>(&connection_settings)) {
modbus_context = modbus_new_rtu(rtu->device.c_str(), rtu->baudrate,
static_cast<char>(rtu->parity),
rtu->data_bits, rtu->stop_bits);
modbus_set_slave(modbus_context, rtu->unit);
}
auto response_timeout_secs = (uint32_t)response_timeout;
auto response_timeout_usecs =
(uint32_t)(response_timeout - (double)response_timeout_secs);
modbus_set_response_timeout(modbus_context, response_timeout_secs,
response_timeout_usecs);
return Node::prepare();
}
Endianess modbus::parseEndianess(char const *str) {
if (!strcmp(str, "little"))
return Endianess::Little;
if (!strcmp(str, "big"))
return Endianess::Big;
throw RuntimeError{"invalid endianess"};
}
Parity modbus::parseParity(char const *str) {
if (!strcmp(str, "none"))
return Parity::None;
if (!strcmp(str, "even"))
return Parity::Even;
if (!strcmp(str, "odd"))
return Parity::Odd;
throw RuntimeError{"invalid parity"};
}
Rtu Rtu::parse(json_t *json) {
char const *device = nullptr;
char const *parity_str = nullptr;
int baudrate = -1;
int data_bits = -1;
int stop_bits = -1;
json_error_t err;
int ret = json_unpack_ex(json, &err, 0, "{ s: s, s: s, s: i, s: i, s: i }",
"device", &device, "parity", &parity_str, "baudrate",
&baudrate, "data_bits", &data_bits, "stop_bits",
&stop_bits);
if (ret)
throw ConfigError(json, err, "node-config-node-modbus-rtu");
Parity parity = parseParity(parity_str);
return Rtu{device, parity, baudrate, data_bits, stop_bits};
}
Tcp Tcp::parse(json_t *json) {
char const *remote = nullptr;
int port = 502;
int unit_int = -1;
json_error_t err;
int ret = json_unpack_ex(json, &err, 0, "{ s: s, s?: i, s?: i }", "remote",
&remote, "port", &port, "unit", &unit_int);
if (ret)
throw ConfigError(json, err, "node-config-node-modbus-tcp");
std::optional unit = unit_int >= 0 ? std::optional(unit_int) : std::nullopt;
return Tcp{
.remote = remote,
.port = (uint16_t)port,
.unit = unit,
};
}
RegisterMappingSingle RegisterMappingSingle::parse(unsigned int index,
Signal::Ptr signal,
json_t *json) {
int address = -1;
int bit = -1;
int integer_registers = -1;
char const *word_endianess_str = nullptr;
char const *byte_endianess_str = nullptr;
double offset = 0.0;
double scale = 1.0;
json_error_t err;
int ret = json_unpack_ex(
json, &err, 0, "{ s: i, s?: i, s?: i, s?: s, s?: s, s?: F, s?: F }",
"address", &address, "bit", &bit, "integer_registers", &integer_registers,
"word_endianess", &word_endianess_str, "byte_endianess",
&byte_endianess_str, "offset", &offset, "scale", &scale);
if (ret)
throw ConfigError(json, err, "node-config-node-modbus-signal");
if (integer_registers != -1 &&
(integer_registers <= 0 || (size_t)integer_registers > MAX_REGISTERS))
throw RuntimeError{"unsupported register block size"};
Endianess word_endianess = Endianess::Big;
if (word_endianess_str)
word_endianess = parseEndianess(word_endianess_str);
Endianess byte_endianess = Endianess::Big;
if (byte_endianess_str)
byte_endianess = parseEndianess(byte_endianess_str);
auto mapping = RegisterMappingSingle{index, (modbus_addr_t)address};
if (signal->type == SignalType::FLOAT) {
if (integer_registers == -1) {
mapping.conversion = FloatToFloat{
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.offset = offset,
.scale = scale,
};
} else {
auto integer_conversion = IntegerToInteger{
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = (modbus_addr_t)integer_registers,
};
mapping.conversion = IntegerToFloat{
.integer_conversion = integer_conversion,
.offset = offset,
.scale = scale,
};
}
return mapping;
} else if (signal->type == SignalType::INTEGER) {
if (integer_registers == -1)
integer_registers = 1;
mapping.conversion = IntegerToInteger{
.word_endianess = word_endianess,
.byte_endianess = byte_endianess,
.num_registers = (modbus_addr_t)integer_registers,
};
} else if (signal->type == SignalType::BOOLEAN) {
if (bit < 0 || bit > 15)
throw RuntimeError{
"mappings from bit to bool must be in the range 0 to 16"};
mapping.conversion = BitToBool{
.bit = (uint8_t)bit,
};
} else {
throw RuntimeError{"unsupported signal type"};
}
return mapping;
}
unsigned int ModbusNode::parseMappings(std::vector<RegisterMapping> &mappings,
json_t *json) {
assert(json_is_array(json));
size_t i;
json_t *signal_json;
auto signals = getInputSignals(false);
json_array_foreach(json, i, signal_json) {
auto signal = signals->getByIndex(i);
mappings.push_back(RegisterMappingSingle::parse(i, signal, signal_json));
}
return json_array_size(json);
}
int ModbusNode::parse(json_t *json) {
if (auto ret = Node::parse(json))
return ret;
json_error_t err;
char const *transport = nullptr;
json_t *in_json = nullptr;
json_t *out_json = nullptr;
if (json_unpack_ex(
json, &err, 0,
"{ s: s, s?: F, s?: F, s?: i, s?: i, s?: F, s?: o, s?: o }",
"transport", &transport, "response_timeout", &response_timeout,
"reconnect_interval", &reconnect_interval, "min_block_usage",
&min_block_usage, "max_block_size", &max_block_size, "rate", &rate,
"in", &in_json, "out", &out_json))
throw ConfigError(json, err, "node-config-node-modbus");
if (in.enabled && rate < 0)
throw RuntimeError{"missing polling rate for Modbus reads"};
if (!strcmp(transport, "rtu"))
connection_settings = Rtu::parse(json);
else if (!strcmp(transport, "tcp"))
connection_settings = Tcp::parse(json);
else
throw ConfigError(json, err, "node-config-node-modbus-transport");
json_t *signals_json;
if (in_json && (signals_json = json_object_get(in_json, "signals")))
num_in_signals = parseMappings(in_mappings, signals_json);
if (out_json && (signals_json = json_object_get(out_json, "signals")))
num_out_signals = parseMappings(out_mappings, signals_json);
return 0;
}
int ModbusNode::check() { return Node::check(); }
int ModbusNode::start() {
if (modbus_connect(modbus_context) == -1)
throw RuntimeError{"connection failure: {}", modbus_strerror(errno)};
return Node::start();
}
int ModbusNode::stop() {
modbus_close(modbus_context);
return Node::stop();
}
std::vector<int> ModbusNode::getPollFDs() { return {read_task.getFD()}; }
std::vector<int> ModbusNode::getNetemFDs() {
if (modbus_context != nullptr &&
std::holds_alternative<Tcp>(connection_settings)) {
return {modbus_get_socket(modbus_context)};
}
return {};
}
const std::string &ModbusNode::getDetails() {
if (details.empty()) {
if (auto tcp = std::get_if<Tcp>(&connection_settings)) {
details = fmt::format("transport=tcp, remote={}, port={}", tcp->remote,
tcp->port);
if (tcp->unit)
details.append(fmt::format(", unit={}", *tcp->unit));
}
if (auto rtu = std::get_if<Rtu>(&connection_settings)) {
details = fmt::format("transport=rtu, device={}, baudrate={}, parity={}, "
"data_bits={}, stop_bits={}, unit={}",
rtu->device.c_str(), rtu->baudrate,
static_cast<char>(rtu->parity), rtu->data_bits,
rtu->stop_bits, rtu->unit);
}
}
return details;
}
// Register node
static char name[] = "modbus";
static char description[] = "Read and write Modbus registers";
static NodePlugin<ModbusNode, name, description,
(int)NodeFactory::Flags::SUPPORTS_READ |
(int)NodeFactory::Flags::SUPPORTS_WRITE |
(int)NodeFactory::Flags::SUPPORTS_POLL>
p;