mirror of
https://git.rwth-aachen.de/acs/public/villas/node/
synced 2025-03-09 00:00:00 +01:00
563 lines
16 KiB
C++
563 lines
16 KiB
C++
/** DFT hook.
|
|
*
|
|
* @author Manuel Pitz <manuel.pitz@eonerc.rwth-aachen.de>
|
|
* @copyright 2014-2020, Institute for Automation of Complex Power Systems, EONERC
|
|
* @license GNU General Public License (version 3)
|
|
*
|
|
* VILLASnode
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*********************************************************************************/
|
|
|
|
/** @addtogroup hooks Hook functions
|
|
* @{
|
|
*/
|
|
|
|
#include <cstring>
|
|
#include <cinttypes>
|
|
#include <complex>
|
|
#include <vector>
|
|
#include <villas/timing.h>
|
|
|
|
#include <villas/dumper.hpp>
|
|
#include <villas/hook.hpp>
|
|
#include <villas/path.h>
|
|
#include <villas/sample.h>
|
|
|
|
/* Uncomment to enable dumper of memory windows */
|
|
//#define DFT_MEM_DUMP
|
|
|
|
namespace villas {
|
|
namespace node {
|
|
|
|
class DftHook : public MultiSignalHook {
|
|
|
|
protected:
|
|
enum class PaddingType {
|
|
ZERO,
|
|
SIG_REPEAT
|
|
};
|
|
|
|
enum class WindowType {
|
|
NONE,
|
|
FLATTOP,
|
|
HANN,
|
|
HAMMING
|
|
};
|
|
|
|
enum class FreqEstimationType {
|
|
NONE,
|
|
QUADRATIC
|
|
};
|
|
|
|
struct Point {
|
|
double x;
|
|
double y;
|
|
};
|
|
|
|
struct Phasor {
|
|
double frequency;
|
|
double amplitude;
|
|
double phase;
|
|
double rocof; /**< Rate of change of frequency. */
|
|
};
|
|
|
|
enum WindowType windowType;
|
|
enum PaddingType paddingType;
|
|
enum FreqEstimationType freqEstType;
|
|
|
|
std::vector<std::vector<double>> smpMemory;
|
|
#ifdef DFT_MEM_DUMP
|
|
std::vector<double> ppsMemory;
|
|
#endif
|
|
std::vector<std::vector<std::complex<double>>> matrix;
|
|
std::vector<std::vector<std::complex<double>>> results;
|
|
std::vector<double> filterWindowCoefficents;
|
|
std::vector<std::vector<double>> absResults;
|
|
std::vector<double> absFrequencies;
|
|
|
|
uint64_t calcCount;
|
|
unsigned sampleRate;
|
|
double startFrequency;
|
|
double endFreqency;
|
|
double frequencyResolution;
|
|
unsigned rate;
|
|
unsigned ppsIndex;
|
|
unsigned windowSize;
|
|
unsigned windowMultiplier; /**< Multiplyer for the window to achieve frequency resolution */
|
|
unsigned freqCount; /**< Number of requency bins that are calculated */
|
|
bool sync;
|
|
|
|
uint64_t smpMemPos;
|
|
uint64_t lastSequence;
|
|
|
|
std::complex<double> omega;
|
|
|
|
double windowCorrectionFactor;
|
|
struct timespec lastCalc;
|
|
double nextCalc;
|
|
|
|
Phasor lastResult;
|
|
|
|
std::string dumperPrefix;
|
|
bool dumperEnable;
|
|
#ifdef DFT_MEM_DUMP
|
|
Dumper origSigSync;
|
|
Dumper windowdSigSync;
|
|
Dumper ppsSigSync;
|
|
#endif
|
|
Dumper phasorRocof;
|
|
Dumper phasorPhase;
|
|
Dumper phasorAmplitude;
|
|
Dumper phasorFreq;
|
|
|
|
double angleUnitFactor;
|
|
|
|
public:
|
|
DftHook(struct vpath *p, struct vnode *n, int fl, int prio, bool en = true) :
|
|
MultiSignalHook(p, n, fl, prio, en),
|
|
windowType(WindowType::NONE),
|
|
paddingType(PaddingType::ZERO),
|
|
freqEstType(FreqEstimationType::NONE),
|
|
smpMemory(),
|
|
#ifdef DFT_MEM_DUMP
|
|
ppsMemory(),
|
|
#endif
|
|
matrix(),
|
|
results(),
|
|
filterWindowCoefficents(),
|
|
absResults(),
|
|
absFrequencies(),
|
|
calcCount(0),
|
|
sampleRate(0),
|
|
startFrequency(0),
|
|
endFreqency(0),
|
|
frequencyResolution(0),
|
|
rate(0),
|
|
ppsIndex(0),
|
|
windowSize(0),
|
|
windowMultiplier(0),
|
|
freqCount(0),
|
|
sync(0),
|
|
smpMemPos(0),
|
|
lastSequence(0),
|
|
windowCorrectionFactor(0),
|
|
lastCalc({0, 0}),
|
|
nextCalc(0.0),
|
|
lastResult({0,0,0,0}),
|
|
dumperPrefix("/tmp/plot/"),
|
|
dumperEnable(false),
|
|
#ifdef DFT_MEM_DUMP
|
|
origSigSync(dumperPrefix + "origSigSync"),
|
|
windowdSigSync(dumperPrefix + "windowdSigSync"),
|
|
ppsSigSync(dumperPrefix + "ppsSigSync"),
|
|
#endif
|
|
phasorRocof(dumperPrefix + "phasorRocof"),
|
|
phasorPhase(dumperPrefix + "phasorPhase"),
|
|
phasorAmplitude(dumperPrefix + "phasorAmplitude"),
|
|
phasorFreq(dumperPrefix + "phasorFreq"),
|
|
angleUnitFactor(1)
|
|
{ }
|
|
|
|
virtual void prepare()
|
|
{
|
|
MultiSignalHook::prepare();
|
|
|
|
dumperEnable = logger->level() <= SPDLOG_LEVEL_DEBUG;
|
|
|
|
signal_list_clear(&signals);
|
|
for (unsigned i = 0; i < signalIndices.size(); i++) {
|
|
struct signal *freqSig;
|
|
struct signal *amplSig;
|
|
struct signal *phaseSig;
|
|
struct signal *rocofSig;
|
|
|
|
/* Add signals */
|
|
freqSig = signal_create("frequency", "Hz", SignalType::FLOAT);
|
|
amplSig = signal_create("amplitude", "V", SignalType::FLOAT);
|
|
phaseSig = signal_create("phase", "rad", SignalType::FLOAT);
|
|
rocofSig = signal_create("rocof", "Hz/s", SignalType::FLOAT);
|
|
|
|
if (!freqSig || !amplSig || !phaseSig || !rocofSig)
|
|
throw RuntimeError("Failed to create new signals");
|
|
|
|
vlist_push(&signals, freqSig);
|
|
vlist_push(&signals, amplSig);
|
|
vlist_push(&signals, phaseSig);
|
|
vlist_push(&signals, rocofSig);
|
|
}
|
|
|
|
/* Initialize sample memory */
|
|
smpMemory.clear();
|
|
for (unsigned i = 0; i < signalIndices.size(); i++)
|
|
smpMemory.emplace_back(windowSize, 0.0);
|
|
|
|
#ifdef DFT_MEM_DUMP
|
|
/* Initialize temporary ppsMemory */
|
|
ppsMemory.clear();
|
|
ppsMemory.resize(windowSize, 0.0);
|
|
#endif
|
|
|
|
/* Calculate how much zero padding ist needed for a needed resolution */
|
|
windowMultiplier = ceil(((double) sampleRate / windowSize) / frequencyResolution);
|
|
|
|
freqCount = ceil((endFreqency - startFrequency) / frequencyResolution) + 1;
|
|
|
|
/* Initialize matrix of dft coeffients */
|
|
matrix.clear();
|
|
for (unsigned i = 0; i < freqCount; i++)
|
|
matrix.emplace_back(windowSize * windowMultiplier, 0.0);
|
|
|
|
/* Initalize dft results matrix */
|
|
results.clear();
|
|
for (unsigned i = 0; i < signalIndices.size(); i++) {
|
|
results.emplace_back(freqCount, 0.0);
|
|
absResults.emplace_back(freqCount, 0.0);
|
|
}
|
|
|
|
filterWindowCoefficents.resize(windowSize);
|
|
|
|
for (unsigned i = 0; i < freqCount; i++)
|
|
absFrequencies.emplace_back(startFrequency + i * frequencyResolution);
|
|
|
|
generateDftMatrix();
|
|
calculateWindow(windowType);
|
|
|
|
state = State::PREPARED;
|
|
}
|
|
|
|
virtual void parse(json_t *json)
|
|
{
|
|
MultiSignalHook::parse(json);
|
|
int ret;
|
|
int windowSizeFactor = 1;
|
|
|
|
const char *paddingTypeC = nullptr;
|
|
const char *windowTypeC = nullptr;
|
|
const char *freqEstimateTypeC = nullptr;
|
|
const char *angleUnitC = nullptr;
|
|
|
|
json_error_t err;
|
|
|
|
assert(state != State::STARTED);
|
|
|
|
Hook::parse(json);
|
|
|
|
ret = json_unpack_ex(json, &err, 0, "{ s?: i, s?: F, s?: F, s?: F, s?: i, s?: i, s?: s, s?: s, s?: s, s?: b, s?: i, s?: s}",
|
|
"sample_rate", &sampleRate,
|
|
"start_freqency", &startFrequency,
|
|
"end_freqency", &endFreqency,
|
|
"frequency_resolution", &frequencyResolution,
|
|
"dft_rate", &rate,
|
|
"window_size_factor", &windowSizeFactor,
|
|
"window_type", &windowTypeC,
|
|
"padding_type", &paddingTypeC,
|
|
"freq_estimate_type", &freqEstimateTypeC,
|
|
"sync", &sync,
|
|
"pps_index", &ppsIndex,
|
|
"angle_unit", &angleUnitC
|
|
);
|
|
if (ret)
|
|
throw ConfigError(json, err, "node-config-hook-dft");
|
|
|
|
windowSize = sampleRate * windowSizeFactor / (double) rate;
|
|
logger->debug("Set windows size to {} samples which fits {} / rate {}s", windowSize, windowSizeFactor, 1.0 / rate);
|
|
|
|
if (!windowTypeC)
|
|
logger->info("No Window type given, assume no windowing");
|
|
else if (strcmp(windowTypeC, "flattop") == 0)
|
|
windowType = WindowType::FLATTOP;
|
|
else if (strcmp(windowTypeC, "hamming") == 0)
|
|
windowType = WindowType::HAMMING;
|
|
else if (strcmp(windowTypeC, "hann") == 0)
|
|
windowType = WindowType::HANN;
|
|
else
|
|
throw ConfigError(json, "node-config-hook-dft-window-type", "Invalid window type: {}", windowTypeC);
|
|
|
|
if (!angleUnitC)
|
|
logger->info("No angle type given, assume rad");
|
|
else if (strcmp(angleUnitC, "rad") == 0)
|
|
angleUnitFactor = 1;
|
|
else if (strcmp(angleUnitC, "degree") == 0)
|
|
angleUnitFactor = 180 / M_PI;
|
|
else
|
|
throw ConfigError(json, "node-config-hook-dft-angle-unit", "Angle unit {} not recognized", angleUnitC);
|
|
|
|
if (!paddingTypeC)
|
|
logger->info("No Padding type given, assume no zeropadding");
|
|
else if (strcmp(paddingTypeC, "zero") == 0)
|
|
paddingType = PaddingType::ZERO;
|
|
else if (strcmp(paddingTypeC, "signal_repeat") == 0)
|
|
paddingType = PaddingType::SIG_REPEAT;
|
|
else
|
|
throw ConfigError(json, "node-config-hook-dft-padding-type", "Padding type {} not recognized", paddingTypeC);
|
|
|
|
if (!freqEstimateTypeC) {
|
|
logger->info("No Frequency estimation type given, assume no none");
|
|
freqEstType = FreqEstimationType::NONE;
|
|
}
|
|
else if (strcmp(freqEstimateTypeC, "quadratic") == 0)
|
|
freqEstType = FreqEstimationType::QUADRATIC;
|
|
|
|
state = State::PARSED;
|
|
}
|
|
|
|
virtual void check()
|
|
{
|
|
assert(state == State::PARSED);
|
|
|
|
if (endFreqency < 0 || endFreqency > sampleRate)
|
|
throw RuntimeError("End frequency must be smaller than sampleRate {}", sampleRate);
|
|
|
|
if (frequencyResolution > (double) sampleRate / windowSize)
|
|
throw RuntimeError("The maximum frequency resolution with smaple_rate:{} and window_site:{} is {}", sampleRate, windowSize, ((double)sampleRate/windowSize));
|
|
|
|
state = State::CHECKED;
|
|
}
|
|
|
|
virtual Hook::Reason process(struct sample *smp)
|
|
{
|
|
assert(state == State::STARTED);
|
|
|
|
/* Update sample memory */
|
|
unsigned i = 0;
|
|
for (auto index : signalIndices)
|
|
smpMemory[i++][smpMemPos % windowSize] = smp->data[index].f;
|
|
|
|
#ifdef DFT_MEM_DUMP
|
|
ppsMemory[smpMemPos % windowSize] = smp->data[ppsIndex].f;
|
|
#endif
|
|
smpMemPos++;
|
|
|
|
bool run = false;
|
|
if (sync) {
|
|
double smpNsec = smp->ts.origin.tv_sec * 1e9 + smp->ts.origin.tv_nsec;
|
|
|
|
if (smpNsec > nextCalc) {
|
|
run = true;
|
|
nextCalc = (smp->ts.origin.tv_sec + (((calcCount % rate) + 1) / (double) rate)) * 1e9;
|
|
}
|
|
}
|
|
|
|
if (run) {
|
|
lastCalc = smp->ts.origin;
|
|
|
|
#ifdef DFT_MEM_DUMP
|
|
double tmpPPSWindow[windowSize];
|
|
|
|
for (unsigned i = 0; i< windowSize; i++)
|
|
tmpPPSWindow[i] = ppsMemory[(i + smpMemPos) % windowSize];
|
|
|
|
if (dumperEnable)
|
|
ppsSigSync.writeDataBinary(windowSize, tmpPPSWindow);
|
|
#endif
|
|
|
|
#pragma omp parallel for
|
|
for (unsigned i = 0; i < signalIndices.size(); i++) {
|
|
Phasor currentResult = {0,0,0,0};
|
|
|
|
calculateDft(PaddingType::ZERO, smpMemory[i], results[i], smpMemPos);
|
|
|
|
unsigned maxPos = 0;
|
|
|
|
for (unsigned j = 0; j < freqCount; j++) {
|
|
int multiplier = paddingType == PaddingType::ZERO
|
|
? 1
|
|
: windowMultiplier;
|
|
absResults[i][j] = abs(results[i][j]) * 2 / (windowSize * windowCorrectionFactor * multiplier);
|
|
if (currentResult.amplitude < absResults[i][j]) {
|
|
currentResult.frequency = absFrequencies[j];
|
|
currentResult.amplitude = absResults[i][j];
|
|
maxPos = j;
|
|
}
|
|
}
|
|
|
|
if (freqEstType == FreqEstimationType::QUADRATIC) {
|
|
if (maxPos < 1 || maxPos >= freqCount - 1)
|
|
logger->warn("Maximum frequency bin lies on window boundary. Using non-estimated results!");
|
|
else {
|
|
Point a = { absFrequencies[maxPos - 1], absResults[i][maxPos - 1] };
|
|
Point b = { absFrequencies[maxPos + 0], absResults[i][maxPos + 0] };
|
|
Point c = { absFrequencies[maxPos + 1], absResults[i][maxPos + 1] };
|
|
|
|
Point estimate = quadraticEstimation(a, b, c, maxPos);
|
|
currentResult.frequency = estimate.x;
|
|
currentResult.amplitude = estimate.y;
|
|
}
|
|
}
|
|
|
|
if (windowSize < smpMemPos) {
|
|
|
|
smp->data[i * 4 + 0].f = currentResult.frequency; /* Frequency */
|
|
smp->data[i * 4 + 1].f = (currentResult.amplitude / pow(2, 0.5)); /* Amplitude */
|
|
smp->data[i * 4 + 2].f = atan2(results[i][maxPos].imag(), results[i][maxPos].real()) * angleUnitFactor; /* Phase */
|
|
smp->data[i * 4 + 3].f = (currentResult.frequency - lastResult.frequency) / (double)rate; /* RoCof */
|
|
|
|
}
|
|
|
|
lastResult = currentResult;
|
|
}
|
|
|
|
// The following is a debug output and currently only for channel 0
|
|
if (dumperEnable && windowSize * 5 < smpMemPos){
|
|
phasorFreq.writeDataBinary(1, &(smp->data[0 * 4 + 0].f));
|
|
phasorPhase.writeDataBinary(1, &(smp->data[0 * 4 + 2].f));
|
|
phasorAmplitude.writeDataBinary(1, &(smp->data[0 * 4 + 1].f));
|
|
phasorRocof.writeDataBinary(1, &(smp->data[0 * 4 + 3].f));
|
|
}
|
|
|
|
smp->length = windowSize < smpMemPos ? signalIndices.size() * 4 : 0;
|
|
|
|
calcCount++;
|
|
}
|
|
|
|
if (smp->sequence - lastSequence > 1)
|
|
logger->warn("Calculation is not Realtime. {} sampled missed", smp->sequence - lastSequence);
|
|
|
|
lastSequence = smp->sequence;
|
|
|
|
if (run && windowSize < smpMemPos)
|
|
return Reason::OK;
|
|
|
|
return Reason::SKIP_SAMPLE;
|
|
}
|
|
|
|
/**
|
|
* This function generates the furie coeffients for the calculateDft function
|
|
*/
|
|
void generateDftMatrix()
|
|
{
|
|
using namespace std::complex_literals;
|
|
|
|
omega = exp((-2i * M_PI) / (double)(windowSize * windowMultiplier));
|
|
unsigned startBin = floor(startFrequency / frequencyResolution);
|
|
|
|
for (unsigned i = 0; i < freqCount ; i++) {
|
|
for (unsigned j = 0 ; j < windowSize * windowMultiplier ; j++)
|
|
matrix[i][j] = pow(omega, (i + startBin) * j);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function calculates the discrete furie transform of the input signal
|
|
*/
|
|
void calculateDft(enum PaddingType padding, std::vector<double> &ringBuffer, std::vector<std::complex<double>> &results, unsigned ringBufferPos)
|
|
{
|
|
/* RingBuffer size needs to be equal to windowSize
|
|
* prepare sample window The following parts can be combined */
|
|
double tmpSmpWindow[windowSize];
|
|
|
|
for (unsigned i = 0; i< windowSize; i++)
|
|
tmpSmpWindow[i] = ringBuffer[(i + ringBufferPos) % windowSize] * filterWindowCoefficents[i];;
|
|
|
|
#ifdef DFT_MEM_DUMP
|
|
if (dumperEnable)
|
|
origSigSync.writeDataBinary(windowSize, tmpSmpWindow);
|
|
#endif
|
|
|
|
/*for (unsigned i = 0; i < windowSize; i++)
|
|
tmpSmpWindow[i] *= filterWindowCoefficents[i];
|
|
*/
|
|
for (unsigned i = 0; i < freqCount; i++) {
|
|
results[i] = 0;
|
|
|
|
for (unsigned j = 0; j < windowSize * windowMultiplier; j++) {
|
|
if (padding == PaddingType::ZERO) {
|
|
if (j < windowSize)
|
|
results[i] += tmpSmpWindow[j] * matrix[i][j];
|
|
else
|
|
results[i] += 0;
|
|
}
|
|
else if (padding == PaddingType::SIG_REPEAT) /* Repeat samples */
|
|
results[i] += tmpSmpWindow[j % windowSize] * matrix[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function prepares the selected window coefficents
|
|
*/
|
|
void calculateWindow(enum WindowType windowTypeIn)
|
|
{
|
|
switch (windowTypeIn) {
|
|
case WindowType::FLATTOP:
|
|
for (unsigned i = 0; i < windowSize; i++) {
|
|
filterWindowCoefficents[i] = 0.21557895
|
|
- 0.41663158 * cos(2 * M_PI * i / (windowSize))
|
|
+ 0.277263158 * cos(4 * M_PI * i / (windowSize))
|
|
- 0.083578947 * cos(6 * M_PI * i / (windowSize))
|
|
+ 0.006947368 * cos(8 * M_PI * i / (windowSize));
|
|
windowCorrectionFactor += filterWindowCoefficents[i];
|
|
}
|
|
break;
|
|
|
|
case WindowType::HAMMING:
|
|
case WindowType::HANN: {
|
|
double a0 = 0.5; /* This is the hann window */
|
|
if (windowTypeIn == WindowType::HAMMING)
|
|
a0 = 25./46;
|
|
|
|
for (unsigned i = 0; i < windowSize; i++) {
|
|
filterWindowCoefficents[i] = a0 - (1 - a0) * cos(2 * M_PI * i / (windowSize));
|
|
windowCorrectionFactor += filterWindowCoefficents[i];
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
for (unsigned i = 0; i < windowSize; i++) {
|
|
filterWindowCoefficents[i] = 1;
|
|
windowCorrectionFactor += filterWindowCoefficents[i];
|
|
}
|
|
break;
|
|
}
|
|
|
|
windowCorrectionFactor /= windowSize;
|
|
}
|
|
|
|
/**
|
|
* This function is calculating the mximum based on a quadratic interpolation
|
|
*
|
|
* This function is based on the following paper:
|
|
* https://mgasior.web.cern.ch/pap/biw2004.pdf
|
|
* https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/
|
|
* *
|
|
* In particular equation 10
|
|
*/
|
|
Point quadraticEstimation(const Point &a, const Point &b, const Point &c, unsigned maxFBin)
|
|
{
|
|
// Frequency estimation
|
|
double maxBinEst = (double) maxFBin + (c.y - a.y) / (2 * (2 * b.y - a.y - c.y));
|
|
double y_Fmax = startFrequency + maxBinEst * frequencyResolution; // convert bin to frequency
|
|
|
|
// Amplitude estimation
|
|
double f = (a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)) / ((a.x - b.x) * (a.x - c.x) * (c.x - b.x));
|
|
double g = (pow(a.x, 2) * (b.y - c.y) + pow(b.x, 2) * (c.y - a.y) + pow(c.x, 2) * (a.y - b.y)) / ((a.x - b.x) * (a.x - c.x) * (b.x - c.x));
|
|
double h = (pow(a.x, 2) * (b.x * c.y - c.x * b.y) + a.x * (pow(c.x, 2) * b.y - pow(b.x,2) * c.y)+ b.x * c.x * a.y * (b.x - c.x)) / ((a.x - b.x) * (a.x - c.x) * (b.x - c.x));
|
|
double i = f * pow(y_Fmax,2) + g * y_Fmax + h;
|
|
|
|
return { y_Fmax, i };
|
|
}
|
|
};
|
|
|
|
/* Register hook */
|
|
static char n[] = "dft";
|
|
static char d[] = "This hook calculates the dft on a window";
|
|
static HookPlugin<DftHook, n, d, (int) Hook::Flags::NODE_READ | (int) Hook::Flags::NODE_WRITE | (int) Hook::Flags::PATH> p;
|
|
|
|
} /* namespace node */
|
|
} /* namespace villas */
|
|
|
|
/** @} */
|