1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-30 00:00:11 +01:00
VILLASnode/lib/nodes/iec60870.cpp
Philipp Jungkamp 7e10188c2d Allow sending multiple ASDUs for a sample
ASDUs have a limited capacity, this creates multiple ASDUs if a single
one is not able to hold all sample values.
2022-07-27 11:14:55 +00:00

709 lines
22 KiB
C++

/** Node type: IEC60870-5-104
*
* @author Steffen Vogel <svogel2@eonerc.rwth-aachen.de>
* @copyright 2014-2022, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <algorithm>
#include <villas/node_compat.hpp>
#include <villas/nodes/iec60870.hpp>
#include <villas/utils.hpp>
#include <villas/sample.hpp>
#include <villas/exceptions.hpp>
#include <villas/super_node.hpp>
#include <villas/exceptions.hpp>
using namespace villas;
using namespace villas::node;
using namespace villas::utils;
using namespace villas::node::iec60870;
using namespace std::literals::chrono_literals;
CP56Time2a timespec_to_cp56time2a(timespec time) {
time_t time_ms =
static_cast<time_t> (time.tv_sec) * 1000
+ static_cast<time_t> (time.tv_nsec) / 1000000;
return CP56Time2a_createFromMsTimestamp(NULL,time_ms);
}
timespec cp56time2a_to_timespec(CP56Time2a cp56time2a) {
auto time_ms = CP56Time2a_toMsTimestamp(cp56time2a);
timespec time {};
time.tv_nsec = time_ms % 1000 * 1000;
time.tv_sec = time_ms / 1000;
return time;
}
// ------------------------------------------
// ASDUDataType
// ------------------------------------------
ASDUData ASDUData::parse(json_t *signal_json) {
json_error_t err;
char const *asdu_type_name = nullptr;
int with_timestamp = -1;
char const *asdu_type_id = nullptr;
int ioa = 0;
if (json_unpack_ex(signal_json, &err, 0, "{ s?: s, s?: b, s?: s, s: i }",
"asdu_type", &asdu_type_name,
"with_timestamp", &with_timestamp,
"asdu_type_id", &asdu_type_id,
"ioa", &ioa
))
throw ConfigError(signal_json, err, "node-config-node-iec60870-5-104");
with_timestamp = with_timestamp != -1 ? with_timestamp != 0 : false;
if (ioa == 0)
throw RuntimeError("Found invalid ioa {} in config", ioa);
if ( (asdu_type_name && asdu_type_id) ||
(!asdu_type_name && !asdu_type_id))
throw RuntimeError("Please specify one of asdu_type or asdu_type_id", ioa);
auto asdu_data = asdu_type_name
? ASDUData::lookupName(asdu_type_name, with_timestamp, ioa)
: ASDUData::lookupTypeId(asdu_type_id, ioa);
if (!asdu_data.has_value())
throw RuntimeError("Found invalid asdu_type or asdu_type_id");
if (asdu_type_id && with_timestamp != -1 && asdu_data->hasTimestamp() != with_timestamp)
throw RuntimeError("Found mismatch between asdu_type_id {} and with_timestamp {}", asdu_type_id, with_timestamp != 0);
return *asdu_data;
};
std::optional<ASDUData> ASDUData::lookupTypeId(char const *type_id, int ioa)
{
auto check = [type_id] (Descriptor descriptor) {
return !strcmp(descriptor.type_id,type_id);
};
auto descriptor = std::find_if(begin(descriptors), end(descriptors), check);
if (descriptor != end(descriptors)) {
return ASDUData { *descriptor, ioa };
} else {
return std::nullopt;
}
}
std::optional<ASDUData> ASDUData::lookupName(char const *name, bool with_timestamp, int ioa)
{
auto check = [name,with_timestamp] (Descriptor descriptor) {
return !strcmp(descriptor.name,name) && descriptor.has_timestamp == with_timestamp;
};
auto descriptor = std::find_if(begin(descriptors), end(descriptors), check);
if (descriptor != end(descriptors)) {
return ASDUData { *descriptor, ioa };
} else {
return std::nullopt;
}
}
std::optional<ASDUData> ASDUData::lookupType(int type, int ioa)
{
auto check = [type] (Descriptor descriptor) {
return descriptor.type == type;
};
auto descriptor = std::find_if(begin(descriptors), end(descriptors), check);
if (descriptor != end(descriptors)) {
return ASDUData { *descriptor, ioa };
} else {
return std::nullopt;
}
}
bool ASDUData::hasTimestamp() const
{
return this->descriptor.has_timestamp;
}
ASDUData::Type ASDUData::type() const
{
return this->descriptor.type;
}
char const * ASDUData::name() const {
return this->descriptor.name;
}
ASDUData::Type ASDUData::typeWithoutTimestamp() const
{
return this->descriptor.type_without_timestamp;
}
ASDUData ASDUData::withoutTimestamp() const
{
return ASDUData::lookupType(this->typeWithoutTimestamp(), this->ioa).value();
}
SignalType ASDUData::signalType() const
{
return this->descriptor.signal_type;
}
std::optional<ASDUData::Sample> ASDUData::checkASDU(CS101_ASDU const &asdu) const
{
if (CS101_ASDU_getTypeID(asdu) != static_cast<int> (this->descriptor.type)) {
return std::nullopt;
}
for (int i = 0; i < CS101_ASDU_getNumberOfElements(asdu); i++) {
InformationObject io = CS101_ASDU_getElement(asdu, i);
int ioa = InformationObject_getObjectAddress(io);
if (ioa != this->ioa) {
InformationObject_destroy(io);
continue;
}
SignalData signal_data;
QualityDescriptor quality;
switch (this->typeWithoutTimestamp()) {
case ASDUData::SCALED_INT: {
auto scaled = reinterpret_cast<MeasuredValueScaled> (io);
int value = MeasuredValueScaled_getValue(scaled);
signal_data.i = static_cast<int64_t> (value);
quality = MeasuredValueScaled_getQuality(scaled);
} break;
case ASDUData::NORMALIZED_FLOAT: {
auto normalized = reinterpret_cast<MeasuredValueNormalized> (io);
float value = MeasuredValueNormalized_getValue(normalized);
signal_data.f = static_cast<double> (value);
quality = MeasuredValueNormalized_getQuality(normalized);
} break;
case ASDUData::DOUBLE_POINT: {
auto double_point = reinterpret_cast<DoublePointInformation> (io);
DoublePointValue value = DoublePointInformation_getValue(double_point);
signal_data.i = static_cast<int64_t> (value);
quality = DoublePointInformation_getQuality(double_point);
} break;
case ASDUData::SINGLE_POINT: {
auto single_point = reinterpret_cast<SinglePointInformation> (io);
bool value = SinglePointInformation_getValue(single_point);
signal_data.b = static_cast<bool> (value);
quality = SinglePointInformation_getQuality(single_point);
} break;
case ASDUData::SHORT_FLOAT: {
auto short_value = reinterpret_cast<MeasuredValueShort> (io);
float value = MeasuredValueShort_getValue(short_value);
signal_data.f = static_cast<double> (value);
quality = MeasuredValueShort_getQuality(short_value);
} break;
default: assert(!"unreachable");
}
std::optional<CP56Time2a> time_cp56;
switch (this->type()) {
case ASDUData::SCALED_INT_WITH_TIMESTAMP: {
auto scaled = reinterpret_cast<MeasuredValueScaledWithCP56Time2a> (io);
time_cp56 = MeasuredValueScaledWithCP56Time2a_getTimestamp(scaled);
} break;
case ASDUData::NORMALIZED_FLOAT_WITH_TIMESTAMP: {
auto normalized = reinterpret_cast<MeasuredValueNormalizedWithCP56Time2a> (io);
time_cp56 = MeasuredValueNormalizedWithCP56Time2a_getTimestamp(normalized);
} break;
case ASDUData::DOUBLE_POINT_WITH_TIMESTAMP: {
auto double_point = reinterpret_cast<DoublePointWithCP56Time2a> (io);
time_cp56 = DoublePointWithCP56Time2a_getTimestamp(double_point);
} break;
case ASDUData::SINGLE_POINT_WITH_TIMESTAMP: {
auto single_point = reinterpret_cast<SinglePointWithCP56Time2a> (io);
time_cp56 = SinglePointWithCP56Time2a_getTimestamp(single_point);
} break;
case ASDUData::SHORT_FLOAT_WITH_TIMESTAMP: {
auto short_value = reinterpret_cast<MeasuredValueShortWithCP56Time2a> (io);
time_cp56 = MeasuredValueShortWithCP56Time2a_getTimestamp(short_value);
} break;
default: time_cp56 = std::nullopt;
}
InformationObject_destroy(io);
std::optional<timespec> timestamp = time_cp56.has_value()
? std::optional { cp56time2a_to_timespec(*time_cp56) }
: std::nullopt;
return ASDUData::Sample { signal_data, quality, timestamp };
}
return std::nullopt;
}
bool ASDUData::addSampleToASDU(CS101_ASDU &asdu, ASDUData::Sample sample) const
{
std::optional<CP56Time2a> timestamp = sample.timestamp.has_value()
? std::optional { timespec_to_cp56time2a(sample.timestamp.value()) }
: std::nullopt;
InformationObject io;
switch (this->descriptor.type) {
case ASDUData::SCALED_INT: {
auto value = static_cast<int16_t> (sample.signal_data.i & 0xFFFF);
auto scaled = MeasuredValueScaled_create(NULL,this->ioa,value,sample.quality);
io = reinterpret_cast<InformationObject> (scaled);
} break;
case ASDUData::NORMALIZED_FLOAT: {
auto value = static_cast<float> (sample.signal_data.f);
auto normalized = MeasuredValueNormalized_create(NULL,this->ioa,value,sample.quality);
io = reinterpret_cast<InformationObject> (normalized);
} break;
case ASDUData::DOUBLE_POINT: {
auto value = static_cast<DoublePointValue> (sample.signal_data.i & 0x3);
auto double_point = DoublePointInformation_create(NULL,this->ioa,value,sample.quality);
io = reinterpret_cast<InformationObject> (double_point);
} break;
case ASDUData::SINGLE_POINT: {
auto value = sample.signal_data.b;
auto single_point = SinglePointInformation_create(NULL,this->ioa,value,sample.quality);
io = reinterpret_cast<InformationObject> (single_point);
} break;
case ASDUData::SHORT_FLOAT: {
auto value = static_cast<float> (sample.signal_data.f);
auto short_float = MeasuredValueShort_create(NULL,this->ioa,value,sample.quality);
io = reinterpret_cast<InformationObject> (short_float);
} break;
case ASDUData::SCALED_INT_WITH_TIMESTAMP: {
auto value = static_cast<int16_t> (sample.signal_data.i & 0xFFFF);
auto scaled = MeasuredValueScaledWithCP56Time2a_create(NULL,this->ioa,value,sample.quality,timestamp.value());
io = reinterpret_cast<InformationObject> (scaled);
} break;
case ASDUData::NORMALIZED_FLOAT_WITH_TIMESTAMP: {
auto value = static_cast<float> (sample.signal_data.f);
auto normalized = MeasuredValueNormalizedWithCP56Time2a_create(NULL,this->ioa,value,sample.quality,timestamp.value());
io = reinterpret_cast<InformationObject> (normalized);
} break;
case ASDUData::DOUBLE_POINT_WITH_TIMESTAMP: {
auto value = static_cast<DoublePointValue> (sample.signal_data.i & 0x3);
auto double_point = DoublePointWithCP56Time2a_create(NULL,this->ioa,value,sample.quality,timestamp.value());
io = reinterpret_cast<InformationObject> (double_point);
} break;
case ASDUData::SINGLE_POINT_WITH_TIMESTAMP: {
auto value = sample.signal_data.b;
auto single_point = SinglePointWithCP56Time2a_create(NULL,this->ioa,value,sample.quality,timestamp.value());
io = reinterpret_cast<InformationObject> (single_point);
} break;
case ASDUData::SHORT_FLOAT_WITH_TIMESTAMP: {
auto value = static_cast<float> (sample.signal_data.f);
auto short_float = MeasuredValueShortWithCP56Time2a_create(NULL,this->ioa,value,sample.quality,timestamp.value());
io = reinterpret_cast<InformationObject> (short_float);
} break;
default: assert(!"unreachable");
}
bool successfully_added = CS101_ASDU_addInformationObject(asdu, io);
InformationObject_destroy(io);
return successfully_added;
}
ASDUData::ASDUData(ASDUData::Descriptor const &descriptor, int ioa) : ioa(ioa), descriptor(descriptor)
{}
// ------------------------------------------
// SlaveNode
// ------------------------------------------
void SlaveNode::createSlave() noexcept
{
auto &server = this->server;
// destroy slave id it was already created
this->destroySlave();
// create the slave object
server.slave = CS104_Slave_create(server.low_priority_queue,server.high_priority_queue);
CS104_Slave_setServerMode(server.slave, CS104_MODE_SINGLE_REDUNDANCY_GROUP);
// configure the slave according to config
server.asdu_app_layer_parameters = CS104_Slave_getAppLayerParameters(server.slave);
CS104_APCIParameters apci_parameters = CS104_Slave_getConnectionParameters(server.slave);
if (server.apci_t0) apci_parameters->t0 = *server.apci_t0;
if (server.apci_t1) apci_parameters->t1 = *server.apci_t1;
if (server.apci_t2) apci_parameters->t2 = *server.apci_t2;
if (server.apci_t3) apci_parameters->t3 = *server.apci_t3;
if (server.apci_k) apci_parameters->k = *server.apci_k;
if (server.apci_w) apci_parameters->w = *server.apci_w;
CS104_Slave_setLocalAddress(server.slave, server.local_address.c_str());
CS104_Slave_setLocalPort(server.slave, server.local_port);
// setup callbacks into the class
CS104_Slave_setClockSyncHandler(server.slave, [] (void *tcp_node, IMasterConnection connection, CS101_ASDU asdu, CP56Time2a new_time) {
auto self = static_cast<SlaveNode const *> (tcp_node);
return self->onClockSync(connection,asdu,new_time);
}, this);
CS104_Slave_setInterrogationHandler(server.slave, [] (void *tcp_node, IMasterConnection connection, CS101_ASDU asdu, QualifierOfInterrogation qoi) {
auto self = static_cast<SlaveNode const *> (tcp_node);
return self->onInterrogation(connection,asdu,qoi);
}, this);
CS104_Slave_setASDUHandler(server.slave, [] (void *tcp_node, IMasterConnection connection, CS101_ASDU asdu) {
auto self = static_cast<SlaveNode const *> (tcp_node);
return self->onASDU(connection,asdu);
}, this);
CS104_Slave_setConnectionEventHandler(server.slave, [](void *tcp_node, IMasterConnection connection, CS104_PeerConnectionEvent event){
auto self = static_cast<SlaveNode const *> (tcp_node);
self->debugPrintConnection(connection,event);
}, this);
CS104_Slave_setRawMessageHandler(server.slave, [](void *tcp_node, IMasterConnection connection, uint8_t *message, int message_size, bool sent){
auto self = static_cast<SlaveNode const *> (tcp_node);
self->debugPrintMessage(connection,message,message_size,sent);
}, this);
server.state = SlaveNode::Server::READY;
}
void SlaveNode::destroySlave() noexcept
{
auto &server = this->server;
if (server.state == SlaveNode::Server::NONE) {
return;
}
this->stopSlave();
CS104_Slave_destroy(server.slave);
server.state = SlaveNode::Server::NONE;
}
void SlaveNode::startSlave() noexcept(false)
{
auto &server = this->server;
if (server.state == SlaveNode::Server::NONE) {
this->createSlave();
} else {
this->stopSlave();
}
server.state = SlaveNode::Server::READY;
CS104_Slave_start(server.slave);
if (!CS104_Slave_isRunning(server.slave)) {
throw std::runtime_error{"iec60870-5-104 server could not be started"};
}
}
void SlaveNode::stopSlave() noexcept
{
auto &server = this->server;
if (server.state != SlaveNode::Server::READY || !CS104_Slave_isRunning(server.slave)) {
return;
}
server.state = SlaveNode::Server::STOPPED;
if (CS104_Slave_getNumberOfQueueEntries(server.slave, NULL) != 0)
this->logger->info("waiting for last messages in queue");
// wait for all messages to be send before really stopping
while ( (CS104_Slave_getNumberOfQueueEntries(server.slave, NULL) != 0) &&
(CS104_Slave_getOpenConnections(server.slave) != 0)) {
std::this_thread::sleep_for(100ms);
}
CS104_Slave_stop(server.slave);
}
void SlaveNode::debugPrintMessage(IMasterConnection connection, uint8_t* message, int message_size, bool sent) const noexcept
{
/// ToDo: debug print the message bytes as trace
}
void SlaveNode::debugPrintConnection(IMasterConnection connection, CS104_PeerConnectionEvent event) const noexcept
{
switch (event) {
case CS104_CON_EVENT_CONNECTION_OPENED: {
this->logger->info("client connected");
} break;
case CS104_CON_EVENT_CONNECTION_CLOSED: {
this->logger->info("client disconnected");
} break;
case CS104_CON_EVENT_ACTIVATED: {
this->logger->info("connection activated");
} break;
case CS104_CON_EVENT_DEACTIVATED: {
this->logger->info("connection closed");
} break;
}
}
bool SlaveNode::onClockSync(IMasterConnection connection, CS101_ASDU asdu, CP56Time2a new_time) const noexcept
{
this->logger->warn("received clock sync command (unimplemented)");
return true;
}
bool SlaveNode::onInterrogation(IMasterConnection connection, CS101_ASDU asdu, QualifierOfInterrogation qoi) const noexcept
{
auto &mapping = this->output.mapping;
auto &last_values = this->output.last_values;
auto &asdu_types = this->output.asdu_types;
switch (qoi) {
// send last values without timestamps
case IEC60870_QOI_STATION: {
IMasterConnection_sendACT_CON(connection, asdu, false);
this->logger->debug("received general interrogation");
auto guard = std::lock_guard { this->output.last_values_mutex };
for(auto asdu_type : asdu_types) {
for (unsigned i = 0; i < mapping.size();) {
auto signal_asdu = CS101_ASDU_create(
IMasterConnection_getApplicationLayerParameters(connection),
false,
CS101_COT_INTERROGATED_BY_STATION,
0,
this->server.common_address,
false,
false
);
do {
auto asdu_data = mapping[i].withoutTimestamp();
auto last_value = last_values[i];
if (asdu_data.type() != asdu_type)
continue;
if(asdu_data.addSampleToASDU(signal_asdu, ASDUData::Sample {
last_value,
IEC60870_QUALITY_GOOD,
std::nullopt
}) == false)
break;
} while (++i < mapping.size());
IMasterConnection_sendASDU(connection, signal_asdu);
CS101_ASDU_destroy(signal_asdu);
}
}
IMasterConnection_sendACT_TERM(connection, asdu);
} break;
// negative acknowledgement
default:
IMasterConnection_sendACT_CON(connection, asdu, true);
this->logger->warn("ignoring interrogation type {}", qoi);
}
return true;
}
bool SlaveNode::onASDU(IMasterConnection connection, CS101_ASDU asdu) const noexcept
{
this->logger->warn("ignoring asdu type {}", CS101_ASDU_getTypeID(asdu));
return true;
}
void SlaveNode::sendPeriodicASDUsForSample(Sample const *sample) const noexcept(false)
{
auto &mapping = this->output.mapping;
// ASDUs may only carry one type of asdu
for (auto& type : this->output.asdu_types) {
// search all occurences of this ASDU type
for (unsigned signal = 0; signal < MIN(sample->length, mapping.size());) {
// create an ASDU for periodic transimission
CS101_ASDU asdu = CS101_ASDU_create(
this->server.asdu_app_layer_parameters,
0,
CS101_COT_PERIODIC,
0,
this->server.common_address,
false,
false
);
do {
auto &asdu_data = mapping[signal];
// this signal_data does not belong in this ASDU
if (asdu_data.type() != type)
continue;
auto timestamp = (sample->flags & (int) SampleFlags::HAS_TS_ORIGIN)
? std::optional{ sample->ts.origin }
: std::nullopt;
if (asdu_data.hasTimestamp() && !timestamp.has_value())
throw RuntimeError("Received sample without timestamp for ASDU type with mandatory timestamp");
if (asdu_data.signalType() != sample_format(sample,signal))
throw RuntimeError("Expected signal type {}, but received {}",
signalTypeToString(asdu_data.signalType()),
signalTypeToString(sample_format(sample,signal))
);
if (asdu_data.addSampleToASDU(asdu, ASDUData::Sample {
sample->data[signal],
IEC60870_QUALITY_GOOD,
timestamp
}) == false)
// ASDU is full -> dispatch -> create a new one
break;
} while (++signal < MIN(sample->length, mapping.size()));
if (CS101_ASDU_getNumberOfElements(asdu) != 0)
CS104_Slave_enqueueASDU(this->server.slave, asdu);
CS101_ASDU_destroy(asdu);
}
}
}
int SlaveNode::_write(Sample *samples[], unsigned sample_count)
{
if (this->server.state != SlaveNode::Server::READY)
return -1;
for (unsigned sample_index = 0; sample_index < sample_count; sample_index++) {
Sample const *sample = samples[sample_index];
// update last_values
this->output.last_values_mutex.lock();
for (unsigned i = 0; i < MIN(sample->length, this->output.last_values.size()); i++) {
this->output.last_values[i] = sample->data[i];
}
this->output.last_values_mutex.unlock();
this->sendPeriodicASDUsForSample(sample);
}
return sample_count;
}
SlaveNode::SlaveNode(const std::string &name) :
Node(name)
{
}
SlaveNode::~SlaveNode()
{
this->destroySlave();
}
int SlaveNode::parse(json_t *json, const uuid_t sn_uuid)
{
{
int ret = Node::parse(json,sn_uuid);
if (ret) return ret;
}
json_error_t err;
auto signals = this->getOutputSignals();
json_t *out_json = nullptr;
char const *address = nullptr;
if(json_unpack_ex(json, &err, 0, "{ s?: o, s?: s, s?: i, s?: i, s?: i, s?: i }",
"out", &out_json,
"address", &address,
"port", &this->server.local_port,
"ca", &this->server.common_address,
"low_priority_queue", &this->server.low_priority_queue,
"high_priority_queue", &this->server.high_priority_queue
))
throw ConfigError(json, err, "node-config-node-iec60870-5-104");
if (address)
this->server.local_address = address;
json_t *signals_json = nullptr;
if (out_json) {
this->output.enabled = true;
if(json_unpack_ex(out_json, &err, 0, "{ s: o }",
"signals", &signals_json
))
throw ConfigError(out_json, err, "node-config-node-iec60870-5-104");
}
auto &mapping = this->output.mapping;
auto &last_values = this->output.last_values;
if (signals_json) {
json_t *signal_json;
size_t i;
json_array_foreach(signals_json, i, signal_json) {
auto signal = signals ? signals->getByIndex(i) : Signal::Ptr{};
auto asdu_data = ASDUData::parse(signal_json);
SignalData initial_value;
if (signal) {
if (signal->type != asdu_data.signalType())
throw RuntimeError("Type mismatch! Expected type {} for signal {}, but found {}",
signalTypeToString(asdu_data.signalType()),
signal->name,
signalTypeToString(signal->type)
);
switch (signal->type) {
case SignalType::BOOLEAN: {
initial_value.b = false;
} break;
case SignalType::INTEGER: {
initial_value.i = 0;
} break;
case SignalType::FLOAT: {
initial_value.f = 0;
} break;
default: assert(!"unreachable");
}
} else {
initial_value.f = 0.0;
}
mapping.push_back(asdu_data);
last_values.push_back(initial_value);
}
}
auto& asdu_types = this->output.asdu_types;
for (auto& asdu_data : mapping) {
if (std::find(begin(asdu_types),end(asdu_types),asdu_data.type()) == end(asdu_types))
asdu_types.push_back(asdu_data.type());
}
return 0;
}
int SlaveNode::start()
{
this->startSlave();
return Node::start();
}
int SlaveNode::stop()
{
this->stopSlave();
return Node::stop();
}
// ------------------------------------------
// Plugin
// ------------------------------------------
static char name[] = "iec60870-5-104";
static char description[] = "Provide values as protocol slave";
static NodePlugin<SlaveNode, name, description, (int) NodeFactory::Flags::SUPPORTS_WRITE> p;