mirror of
https://git.rwth-aachen.de/acs/public/villas/node/
synced 2025-03-30 00:00:11 +01:00
503 lines
14 KiB
C++
503 lines
14 KiB
C++
/** DFT hook.
|
|
*
|
|
* @author Manuel Pitz <manuel.pitz@eonerc.rwth-aachen.de>
|
|
* @copyright 2014-2020, Institute for Automation of Complex Power Systems, EONERC
|
|
* @license GNU General Public License (version 3)
|
|
*
|
|
* VILLASnode
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*********************************************************************************/
|
|
|
|
/** @addtogroup hooks Hook functions
|
|
* @{
|
|
*/
|
|
|
|
#include <cstring>
|
|
#include <cinttypes>
|
|
#include <complex>
|
|
#include <vector>
|
|
|
|
#include <villas/dumper.hpp>
|
|
#include <villas/hook.hpp>
|
|
#include <villas/path.h>
|
|
#include <villas/sample.h>
|
|
#include <villas/format.hpp>
|
|
|
|
#define DFT_MEM_DUMP
|
|
|
|
namespace villas {
|
|
namespace node {
|
|
|
|
class DftHook : public Hook {
|
|
|
|
protected:
|
|
enum PaddingType {
|
|
ZERO,
|
|
SIG_REPEAT
|
|
};
|
|
|
|
enum WindowType {
|
|
NONE,
|
|
FLATTOP,
|
|
HANN,
|
|
HAMMING
|
|
};
|
|
|
|
std::shared_ptr<Dumper> origSigSync;
|
|
std::shared_ptr<Dumper> windowdSigSync;
|
|
std::shared_ptr<Dumper> phasorPhase;
|
|
std::shared_ptr<Dumper> phasorAmplitude;
|
|
std::shared_ptr<Dumper> phasorFreq;
|
|
|
|
enum WindowType windowType;
|
|
enum PaddingType paddingType;
|
|
|
|
std::vector<std::vector<double>> smpMemory;
|
|
std::vector<std::vector<std::complex<double>>> dftMatrix;
|
|
std::vector<std::complex<double>> dftResults;
|
|
std::vector<double> filterWindowCoefficents;
|
|
std::vector<double> absDftResults;
|
|
std::vector<double> absDftFreqs;
|
|
|
|
|
|
uint64_t dftCalcCount;
|
|
unsigned sampleRate;
|
|
double startFreqency;
|
|
double endFreqency;
|
|
double frequencyResolution;
|
|
struct timespec dftRate;
|
|
unsigned ppsIndex;
|
|
unsigned windowSize;
|
|
unsigned windowMultiplier; /**< Multiplyer for the window to achieve frequency resolution */
|
|
unsigned freqCount; /**< Number of requency bins that are calculated */
|
|
bool syncDft;
|
|
|
|
uint64_t smpMemPos;
|
|
uint64_t lastSequence;
|
|
|
|
std::complex<double> omega;
|
|
|
|
double windowCorretionFactor;
|
|
struct timespec lastDftCal;
|
|
|
|
std::vector<int> signalIndex; /**< A list of signalIndex to do dft on */
|
|
|
|
public:
|
|
DftHook(struct vpath *p, struct vnode *n, int fl, int prio, bool en = true) :
|
|
Hook(p, n, fl, prio, en),
|
|
windowType(WindowType::NONE),
|
|
paddingType(PaddingType::ZERO),
|
|
smpMemory(),
|
|
dftMatrix(),
|
|
dftResults(),
|
|
filterWindowCoefficents(),
|
|
absDftResults(),
|
|
absDftFreqs(),
|
|
dftCalcCnt(0),
|
|
sampleRate(0),
|
|
startFreqency(0),
|
|
endFreqency(0),
|
|
frequencyResolution(0),
|
|
dftRate({0, 0}),
|
|
ppsIndex(0),
|
|
windowSize(0),
|
|
windowMultiplier(0),
|
|
freqCount(0),
|
|
windowCorretionFactor(0),
|
|
lastDftCal({0, 0}),
|
|
signalIndex()
|
|
{
|
|
bool debug = false;
|
|
if (debug) {
|
|
origSigSync = std::make_shared<Dumper>("/tmp/plot/origSigSync");
|
|
windowdSigSync = std::make_shared<Dumper>("/tmp/plot/windowdSigSync");
|
|
phasorPhase = std::make_shared<Dumper>("/tmp/plot/phasorPhase");
|
|
phasorAmplitude = std::make_shared<Dumper>("/tmp/plot/phasorAmplitude");
|
|
phasorFreq = std::make_shared<Dumper>("/tmp/plot/phasorFreq");
|
|
}
|
|
}
|
|
|
|
virtual void prepare()
|
|
{
|
|
signal_list_clear(&signals);
|
|
|
|
/* Initialize sample memory */
|
|
smpMemory.clear();
|
|
for (unsigned i = 0; i < signalIndex.size(); i++) {
|
|
struct signal *freqSig;
|
|
struct signal *amplSig;
|
|
struct signal *phaseSig;
|
|
struct signal *rocofSig;
|
|
|
|
/* Add signals */
|
|
freqSig = signal_create("amplitude", nullptr, SignalType::FLOAT);
|
|
amplSig = signal_create("phase", nullptr, SignalType::FLOAT);
|
|
phaseSig = signal_create("frequency", nullptr, SignalType::FLOAT);
|
|
rocofSig = signal_create("rocof", nullptr, SignalType::FLOAT);
|
|
|
|
if (!freqSig || !amplSig || !phaseSig || !rocofSig)
|
|
throw RuntimeError("Failed to create new signals");
|
|
|
|
vlist_push(&signals, freqSig);
|
|
vlist_push(&signals, amplSig);
|
|
vlist_push(&signals, phaseSig);
|
|
vlist_push(&signals, rocofSig);
|
|
|
|
smpMemory.emplace_back(windowSize, 0.0);
|
|
}
|
|
|
|
/* Calculate how much zero padding ist needed for a needed resolution */
|
|
windowMultiplier = ceil(((double)sampleRate / windowSize) / frequencyResolution);
|
|
|
|
freqCount = ceil((endFreqency - startFreqency) / frequencyResolution) + 1;
|
|
|
|
logger->debug("FreqCount : {}", freqCount);
|
|
|
|
/* Initialize matrix of dft coeffients */
|
|
dftMatrix.clear();
|
|
for (unsigned i = 0; i < freqCount; i++)
|
|
dftMatrix.emplace_back(windowSize * windowMultiplier, 0.0);
|
|
|
|
dftResults.resize(freqCount);
|
|
filterWindowCoefficents.resize(windowSize);
|
|
absDftResults.resize(freqCount);
|
|
absDftFreqs.resize(freqCount);
|
|
|
|
for (unsigned i = 0; i < absDftFreqs.size(); i++)
|
|
absDftFreqs[i] = startFreqency + i * frequencyResolution;
|
|
|
|
generateDftMatrix();
|
|
calculateWindow(windowType);
|
|
|
|
state = State::PREPARED;
|
|
}
|
|
|
|
virtual void parse(json_t *cfg)
|
|
{
|
|
const char *paddingTypeC = nullptr, *windowTypeC= nullptr;
|
|
int ret;
|
|
double dftRateIn = 0;
|
|
json_error_t err;
|
|
|
|
json_t *jsonChannelList = nullptr;
|
|
|
|
assert(state != State::STARTED);
|
|
|
|
Hook::parse(cfg);
|
|
|
|
ret = json_unpack_ex(cfg, &err, 0, "{ s?: i, s?: F, s?: F, s?: F, s?: F , s?: i, s?: s, s?: s, s?: s, s?: b, s?: o}",
|
|
"sample_rate", &sampleRate,
|
|
"start_freqency", &startFreqency,
|
|
"end_freqency", &endFreqency,
|
|
"frequency_resolution", &frequencyResolution,
|
|
"dft_rate", &dftRateIn,
|
|
"window_size", &windowSize,
|
|
"window_type", &windowTypeC,
|
|
"padding_type", &paddingTypeC,
|
|
"sync", &syncDft,
|
|
"signal_index", &jsonChannelList
|
|
);
|
|
|
|
dftRate.tv_sec = (int) (1 / dftRateIn);
|
|
dftRate.tv_nsec = fmod( 1 / dftRateIn, 1) * 1e9;
|
|
|
|
if (ret)
|
|
throw ConfigError(cfg, err, "node-config-hook-dft");
|
|
|
|
if (jsonChannelList != nullptr) {
|
|
signalIndex.clear();
|
|
if (jsonChannelList->type == JSON_ARRAY) {
|
|
size_t i;
|
|
json_t *jsonValue;
|
|
json_array_foreach(jsonChannelList, i, jsonValue) {
|
|
if (!json_is_number(jsonValue))
|
|
throw ConfigError(jsonValue, "node-config-hook-dft-channel", "Values must be given as array of integer values!");
|
|
|
|
auto idx = json_number_value(jsonValue);
|
|
|
|
signalIndex.push_back(idx);
|
|
}
|
|
}
|
|
else if (jsonChannelList->type == JSON_INTEGER) {
|
|
if (!json_is_number(jsonChannelList))
|
|
throw ConfigError(jsonChannelList, "node-config-hook-dft-channel", "Value must be given as integer value!");
|
|
|
|
auto idx = json_number_value(jsonChannelList);
|
|
|
|
signalIndex.push_back(idx);
|
|
}
|
|
else
|
|
logger->warn("Could not parse channel list. Please check documentation for syntax");
|
|
}
|
|
else
|
|
throw ConfigError(jsonChannelList, "node-config-node-signal", "No parameter signalIndex given.");
|
|
|
|
if (!windowTypeC) {
|
|
logger->info("No Window type given, assume no windowing");
|
|
windowType = WindowType::NONE;
|
|
}
|
|
else if (strcmp(windowTypeC, "flattop") == 0)
|
|
windowType = WindowType::FLATTOP;
|
|
else if (strcmp(windowTypeC, "hamming") == 0)
|
|
windowType = WindowType::HAMMING;
|
|
else if (strcmp(windowTypeC, "hann") == 0)
|
|
windowType = WindowType::HANN;
|
|
else {
|
|
logger->info("Window type {} not recognized, assume no windowing", windowTypeC);
|
|
windowType = WindowType::NONE;
|
|
}
|
|
|
|
if (!paddingTypeC) {
|
|
logger->info("No Padding type given, assume no zeropadding");
|
|
paddingType = PaddingType::ZERO;
|
|
}
|
|
else if (strcmp(paddingTypeC, "signal_repeat") == 0)
|
|
paddingType = PaddingType::SIG_REPEAT;
|
|
else {
|
|
logger->info("Padding type {} not recognized, assume zero padding", paddingTypeC);
|
|
paddingType = PaddingType::ZERO;
|
|
}
|
|
|
|
if (endFreqency < 0 || endFreqency > sampleRate)
|
|
throw ConfigError(cfg, err, "node-config-hook-dft", "End frequency must be smaller than sampleRate {}", sampleRate);
|
|
|
|
if (frequencyResolution > ((double)sampleRate/windowSize))
|
|
throw ConfigError(cfg, err, "node-config-hook-dft", "The maximum frequency resolution with smaple_rate:{} and window_site:{} is {}", sampleRate, windowSize, ((double)sampleRate/windowSize));
|
|
|
|
state = State::PARSED;
|
|
}
|
|
|
|
virtual Hook::Reason process(struct sample *smp)
|
|
{
|
|
assert(state == State::STARTED);
|
|
|
|
for (unsigned i = 0; i < signalIndex.size(); i++)
|
|
smpMemory[i][smpMemPos % windowSize] = smp->data[signalIndex[i]].f;
|
|
|
|
smpMemPos++;
|
|
|
|
bool runDft = false;
|
|
if (syncDft) {
|
|
//struct timespec timeDiff = time_diff(&lastDftCal, &smp->ts.origin);
|
|
|
|
//double nextCalc = (lastDftCal.tv_sec + dftRate.tv_sec) * 1e9 + lastDftCal.tv_nsec + dftRate.tv_nsec;
|
|
|
|
//double dftRateNSec = dftRate.tv_sec * 1e9 + dftRate.tv_nsec;
|
|
//double smpNsec = smp->ts.origin.tv_sec * 1e9 + smp->ts.origin.tv_nsec;
|
|
|
|
|
|
|
|
|
|
//if ( nextCalc < (smp->ts.origin.tv_sec * 1e9 + smp->ts.origin.tv_nsec) && fmod( smpNsec, dftRateNSec ) < (110*1e9/(sampleRate)))
|
|
// runDft = true;
|
|
|
|
if (smp->ts.origin.tv_sec != lastDftCal.tv_sec)
|
|
runDft = true;
|
|
|
|
//if ((fmod(smp->ts.origin.tv_sec*1e9 + smp->ts.origin.tv_nsec, 1e9/dftRate) < (1e9/(dftRate+1))) && ((timeDiff.tv_sec*1e9+timeDiff.tv_nsec) > (1e9/dftRate)))
|
|
//if ((timeDiff.tv_sec*1e9+timeDiff.tv_nsec) > (1e9/dftRate) && )
|
|
// runDft = true;
|
|
}
|
|
|
|
if (runDft) {
|
|
lastDftCal = smp->ts.origin;
|
|
|
|
// Debugging for pps signal this should only be temporary
|
|
//if (ppsSigSync) {
|
|
//double tmpPPSWindow[windowSize];
|
|
|
|
//for (unsigned i = 0; i< windowSize; i++)
|
|
// tmpPPSWindow[i] = ppsMemory[(i + smpMemPos) % windowSize];
|
|
|
|
//ppsSigSync->writeDataBinary(windowSize, tmpPPSWindow);
|
|
//}
|
|
|
|
#pragma omp parallel for
|
|
for (unsigned i = 0; i < signalIndex.size(); i++) {
|
|
|
|
calculateDft(PaddingType::ZERO, smpMemory[i], dftResults[i], smpMemPos);
|
|
|
|
|
|
|
|
|
|
double maxF = 0;
|
|
double maxA = 0;
|
|
unsigned maxPos = 0;
|
|
double tmpImag[freqCount], tmpReal[freqCount], absVal[freqCount];
|
|
|
|
|
|
for (unsigned j = 0; j < freqCount; j++) {
|
|
int multiplier = paddingType == PaddingType::ZERO
|
|
? 1
|
|
: windowMultiplier;
|
|
absDftResults[i][j] = abs(dftResults[i][j]) * 2 / (windowSize * windowCorretionFactor * multiplier);
|
|
absVal[j] = absDftResults[i][j];
|
|
if (maxA < absDftResults[i][j]) {
|
|
maxF = absDftFreqs[j];
|
|
maxA = absDftResults[i][j];
|
|
maxPos = j;
|
|
}
|
|
tmpImag[j] = dftResults[i][maxPos].imag();
|
|
tmpReal[j] = dftResults[i][maxPos].real();
|
|
}
|
|
windowdSigSync->writeDataBinary(freqCount, tmpImag);
|
|
origSigSync -> writeDataBinary(freqCount, absVal);
|
|
ppsSigSync->writeDataBinary(freqCount, tmpReal);
|
|
|
|
|
|
if (dftCalcCnt > 1) {
|
|
if (phasorFreq)
|
|
phasorFreq->writeData(1, &maxF);
|
|
|
|
smp->data[i * 4].f = maxF; /* Frequency */
|
|
smp->data[i * 4 + 1].f = (maxA / pow(2, 0.5)); /* Amplitude */
|
|
smp->data[i * 4 + 2].f = atan2(dftResults[maxPos].imag(), dftResults[maxPos].real()); /* Phase */
|
|
smp->data[i * 4 + 3].f = 0; /* RoCof */
|
|
|
|
if (phasorPhase)
|
|
phasorPhase->writeData(1, &(smp->data[i * 4 + 2].f));
|
|
}
|
|
}
|
|
|
|
//the following is a debug output and currently only for channel 0
|
|
if (windowSize < smpMemPos){
|
|
if (phasorFreq)
|
|
phasorFreq->writeDataBinary(1, &(smp->data[0 * 4 + 0].f));
|
|
|
|
if (phasorPhase)
|
|
phasorPhase->writeDataBinary(1, &(smp->data[0 * 4 + 2].f));
|
|
|
|
if (phasorAmplitude)
|
|
phasorAmplitude->writeDataBinary(1, &(smp->data[0 * 4 + 1].f));
|
|
}
|
|
|
|
smp->length = windowSize < smpMemPos ? signalIndex.size() * 4 : 0;
|
|
|
|
dftCalcCount++;
|
|
}
|
|
|
|
if ((smp->sequence - lastSequence) > 1)
|
|
logger->warn("Calculation is not Realtime. {} sampled missed", smp->sequence - lastSequence);
|
|
|
|
lastSequence = smp->sequence;
|
|
|
|
if (runDft)
|
|
return Reason::OK;
|
|
|
|
return Reason::SKIP_SAMPLE;
|
|
}
|
|
|
|
void generateDftMatrix()
|
|
{
|
|
using namespace std::complex_literals;
|
|
|
|
omega = exp((-2i * M_PI) / (double)(windowSize * windowMultiplier));
|
|
unsigned startBin = floor(startFreqency / frequencyResolution);
|
|
|
|
for (unsigned i = 0; i < freqCount ; i++) {
|
|
for (unsigned j = 0 ; j < windowSize * windowMultiplier ; j++)
|
|
dftMatrix[i][j] = pow(omega, (i + startBin) * j);
|
|
}
|
|
}
|
|
|
|
void calculateDft(enum PaddingType padding, std::vector<double> &ringBuffer, unsigned ringBufferPos)
|
|
{
|
|
/* RingBuffer size needs to be equal to windowSize
|
|
* prepare sample window The following parts can be combined */
|
|
double tmpSmpWindow[windowSize];
|
|
|
|
for (unsigned i = 0; i< windowSize; i++)
|
|
tmpSmpWindow[i] = ringBuffer[(i + ringBufferPos) % windowSize];
|
|
|
|
#ifdef DFT_MEM_DUMP
|
|
|
|
//if (origSigSync)
|
|
// origSigSync->writeDataBinary(windowSize, tmpSmpWindow);
|
|
#endif
|
|
|
|
for (unsigned i = 0; i < windowSize; i++)
|
|
tmpSmpWindow[i] *= filterWindowCoefficents[i];
|
|
|
|
#ifdef DFT_MEM_DUMP
|
|
|
|
//if (windowdSigSync)
|
|
// windowdSigSync->writeDataBinary(windowSize, tmpSmpWindow);
|
|
|
|
#endif
|
|
|
|
for (unsigned i = 0; i < freqCount; i++) {
|
|
dftResults[i] = 0;
|
|
for (unsigned j = 0; j < windowSize * windowMultiplier; j++) {
|
|
if (padding == PaddingType::ZERO) {
|
|
if (j < (windowSize))
|
|
dftResults[i] += tmpSmpWindow[j] * dftMatrix[i][j];
|
|
else
|
|
dftResults[i] += 0;
|
|
}
|
|
else if (padding == PaddingType::SIG_REPEAT) /* Repeat samples */
|
|
dftResults[i] += tmpSmpWindow[j % windowSize] * dftMatrix[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void calculateWindow(enum WindowType windowTypeIn)
|
|
{
|
|
switch (windowTypeIn) {
|
|
case WindowType::FLATTOP:
|
|
for (unsigned i = 0; i < windowSize; i++) {
|
|
filterWindowCoefficents[i] = 0.21557895
|
|
- 0.41663158 * cos(2 * M_PI * i / (windowSize))
|
|
+ 0.277263158 * cos(4 * M_PI * i / (windowSize))
|
|
- 0.083578947 * cos(6 * M_PI * i / (windowSize))
|
|
+ 0.006947368 * cos(8 * M_PI * i / (windowSize));
|
|
windowCorretionFactor += filterWindowCoefficents[i];
|
|
}
|
|
break;
|
|
|
|
case WindowType::HAMMING:
|
|
case WindowType::HANN: {
|
|
double a0 = 0.5; /* This is the hann window */
|
|
if (windowTypeIn == WindowType::HAMMING)
|
|
a0 = 25./46;
|
|
|
|
for (unsigned i = 0; i < windowSize; i++) {
|
|
filterWindowCoefficents[i] = a0 - (1 - a0) * cos(2 * M_PI * i / (windowSize));
|
|
windowCorretionFactor += filterWindowCoefficents[i];
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
for (unsigned i = 0; i < windowSize; i++) {
|
|
filterWindowCoefficents[i] = 1;
|
|
windowCorretionFactor += filterWindowCoefficents[i];
|
|
}
|
|
break;
|
|
}
|
|
|
|
windowCorretionFactor /= windowSize;
|
|
}
|
|
};
|
|
|
|
/* Register hook */
|
|
static char n[] = "dft";
|
|
static char d[] = "This hook calculates the dft on a window";
|
|
static HookPlugin<DftHook, n, d, (int) Hook::Flags::NODE_READ | (int) Hook::Flags::NODE_WRITE | (int) Hook::Flags::PATH> p;
|
|
|
|
} /* namespace node */
|
|
} /* namespace villas */
|
|
|
|
/** @} */
|