1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-16 00:00:02 +01:00
VILLASnode/lib/nodes/infiniband.c

1025 lines
30 KiB
C

/** Node type: infiniband
*
* @author Dennis Potter <dennis@dennispotter.eu>
* @copyright 2018, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <string.h>
#include <math.h>
#include <villas/nodes/infiniband.h>
#include <villas/plugin.h>
#include <villas/utils.h>
#include <villas/format_type.h>
#include <villas/memory.h>
#include <villas/memory/ib.h>
#include <villas/timing.h>
static int ib_disconnect(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_wc wc[MAX(ib->recv_cq_size, ib->send_cq_size)];
int wcs;
debug(LOG_IB | 1, "Starting to clean up");
rdma_disconnect(ib->ctx.id);
// If there is anything in the Completion Queue, it should be given back to the framework
// Receive Queue
while (ib->conn.available_recv_wrs) {
wcs = ibv_poll_cq(ib->ctx.recv_cq, ib->recv_cq_size, wc);
ib->conn.available_recv_wrs -= wcs;
for (int j = 0; j < wcs; j++)
sample_decref((struct sample *) (wc[j].wr_id));
}
// Send Queue
while ((wcs = ibv_poll_cq(ib->ctx.send_cq, ib->send_cq_size, wc)))
for (int j = 0; j < wcs; j++)
if (wc[j].wr_id > 0)
sample_decref((struct sample *) (wc[j].wr_id));
// Destroy QP
rdma_destroy_qp(ib->ctx.id);
debug(LOG_IB | 3, "Destroyed QP");
return ib->stopThreads;
}
static void ib_build_ibv(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Starting to build IBV components");
// Create completion queues. No completion channel!)
ib->ctx.recv_cq = ibv_create_cq(ib->ctx.id->verbs, ib->recv_cq_size, NULL, NULL, 0);
if (!ib->ctx.recv_cq)
error("Could not create receive completion queue in node %s", node_name(n));
debug(LOG_IB | 3, "Created receive Completion Queue");
ib->ctx.send_cq = ibv_create_cq(ib->ctx.id->verbs, ib->send_cq_size, NULL, NULL, 0);
if (!ib->ctx.send_cq)
error("Could not create send completion queue in node %s", node_name(n));
debug(LOG_IB | 3, "Created send Completion Queue");
// Prepare remaining Queue Pair (QP) attributes
ib->qp_init.send_cq = ib->ctx.send_cq;
ib->qp_init.recv_cq = ib->ctx.recv_cq;
// Create the actual QP
ret = rdma_create_qp(ib->ctx.id, ib->ctx.pd, &ib->qp_init);
if (ret)
error("Failed to create Queue Pair in node %s", node_name(n));
debug(LOG_IB | 3, "Created Queue Pair with %i receive and %i send elements",
ib->qp_init.cap.max_recv_wr, ib->qp_init.cap.max_send_wr);
if (ib->conn.send_inline)
info("Maximum inline size is set to %i byte", ib->qp_init.cap.max_inline_data);
}
static int ib_addr_resolved(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Successfully resolved address");
// Build all components from IB Verbs
ib_build_ibv(n);
// Resolve address
ret = rdma_resolve_route(ib->ctx.id, ib->conn.timeout);
if (ret)
error("Failed to resolve route in node %s", node_name(n));
return 0;
}
static int ib_route_resolved(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
struct rdma_conn_param cm_params;
memset(&cm_params, 0, sizeof(cm_params));
// Send connection request
ret = rdma_connect(ib->ctx.id, &cm_params);
if (ret)
error("Failed to connect in node %s", node_name(n));
debug(LOG_IB | 1, "Called rdma_connect");
return 0;
}
static int ib_connect_request(struct node *n, struct rdma_cm_id *id)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Received a connection request!");
ib->ctx.id = id;
ib_build_ibv(n);
struct rdma_conn_param cm_params;
memset(&cm_params, 0, sizeof(cm_params));
// Accept connection request
ret = rdma_accept(ib->ctx.id, &cm_params);
if (ret)
error("Failed to connect in node %s", node_name(n));
info("Successfully accepted connection request in node %s", node_name(n));
return 0;
}
int ib_reverse(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
SWAP(ib->conn.src_addr, ib->conn.dst_addr);
return 0;
}
int ib_parse(struct node *n, json_t *cfg)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
char *local = NULL;
char *remote = NULL;
const char *transport_mode = "RC";
unsigned periodic_signalling = 0;
int timeout = 1000;
int recv_cq_size = 128;
int send_cq_size = 128;
int max_send_wr = 128;
int max_recv_wr = 128;
int max_inline_data = 0;
int send_inline = 1;
int vectorize_in = 1;
int vectorize_out = 1;
int buffer_subtraction = 16;
int use_fallback = 1;
// Parse JSON files and copy to local variables
json_t *json_in = NULL;
json_t *json_out = NULL;
json_error_t err;
ret = json_unpack_ex(cfg, &err, 0, "{s?: o, s?: o, s?: s, s?: s}",
"in", &json_in,
"out", &json_out,
"rdma_transport_mode", &transport_mode
);
if (ret)
jerror(&err, "Failed to parse in/out json blocks");
if (json_in) {
ret = json_unpack_ex(json_in, &err, 0, "{ s?: s, s?: i, s?: i, s?: i, s?: i}",
"address", &local,
"cq_size", &recv_cq_size,
"max_wrs", &max_recv_wr,
"vectorize", &vectorize_in,
"buffer_subtraction", &buffer_subtraction
);
if (ret)
jerror(&err, "Failed to parse input configuration of node %s", node_name(n));
}
if (json_out) {
ret = json_unpack_ex(json_out, &err, 0, "{ s?: s, s?: i, s?: i, s?: i, s?: i, s?: b, s?: i, s?: b, s?: i}",
"address", &remote,
"resolution_timeout", &timeout,
"cq_size", &send_cq_size,
"max_wrs", &max_send_wr,
"max_inline_data", &max_inline_data,
"send_inline", &send_inline,
"vectorize", &vectorize_out,
"use_fallback", &use_fallback,
"periodic_signalling", &periodic_signalling
);
if (ret)
jerror(&err, "Failed to parse output configuration of node %s", node_name(n));
if (remote) {
ib->is_source = 1;
debug(LOG_IB | 3, "Node %s is up as source and target", node_name(n));
}
}
else {
ib->is_source = 0;
debug(LOG_IB | 3, "Node %s is up as target", node_name(n));
}
// Set fallback mode
ib->conn.use_fallback = use_fallback;
// Set vectorize mode. Do not print, since framework will print this information
n->in.vectorize = vectorize_in;
n->out.vectorize = vectorize_out;
// Set buffer subtraction
ib->conn.buffer_subtraction = buffer_subtraction;
debug(LOG_IB | 4, "Set buffer subtraction to %i in node %s", buffer_subtraction, node_name(n));
// Translate IP:PORT to a struct addrinfo
char* ip_adr = strtok(local, ":");
char* port = strtok(NULL, ":");
ret = getaddrinfo(ip_adr, port, NULL, &ib->conn.src_addr);
if (ret)
error("Failed to resolve local address '%s' of node %s: %s",
local, node_name(n), gai_strerror(ret));
debug(LOG_IB | 4, "Translated %s:%s to a struct addrinfo in node %s", ip_adr, port, node_name(n));
// Translate port space
if (strcmp(transport_mode, "RC") == 0) {
ib->conn.port_space = RDMA_PS_TCP;
ib->qp_init.qp_type = IBV_QPT_RC;
}
else if (strcmp(transport_mode, "UC") == 0) {
#ifdef RDMA_CMA_H_CUSTOM
ib->conn.port_space = RDMA_PS_IB;
ib->qp_init.qp_type = IBV_QPT_UC;
#else
error("Unreliable Connected (UC) mode is only available with an adapted version of librdma. "
"Please read the Infiniband node type Documentation for more information on UC!");
#endif
}
else if (strcmp(transport_mode, "UD") == 0) {
ib->conn.port_space = RDMA_PS_UDP;
ib->qp_init.qp_type = IBV_QPT_UD;
}
else
error("transport_mode = %s is not a valid transport mode in node %s!",
transport_mode, node_name(n));
debug(LOG_IB | 4, "Set transport mode to %s in node %s", transport_mode, node_name(n));
// Set timeout
ib->conn.timeout = timeout;
debug(LOG_IB | 4, "Set timeout to %i in node %s", timeout, node_name(n));
// Set completion queue size
ib->recv_cq_size = recv_cq_size;
ib->send_cq_size = send_cq_size;
debug(LOG_IB | 4, "Set Completion Queue size to %i & %i (in & out) in node %s",
recv_cq_size, send_cq_size, node_name(n));
// Translate inline mode
ib->conn.send_inline = send_inline;
debug(LOG_IB | 4, "Set send_inline to %i in node %s", send_inline, node_name(n));
// Set max. send and receive Work Requests
ib->qp_init.cap.max_send_wr = max_send_wr;
ib->qp_init.cap.max_recv_wr = max_recv_wr;
debug(LOG_IB | 4, "Set max_send_wr and max_recv_wr in node %s to %i and %i, respectively",
node_name(n), max_send_wr, max_recv_wr);
// Set available receive Work Requests to 0
ib->conn.available_recv_wrs = 0;
// Set remaining QP attributes
ib->qp_init.cap.max_send_sge = 4;
ib->qp_init.cap.max_recv_sge = (ib->conn.port_space == RDMA_PS_UDP) ? 5 : 4;
// Set number of bytes to be send inline
ib->qp_init.cap.max_inline_data = max_inline_data;
// Set periodic signalling
if (periodic_signalling == 0)
ib->periodic_signalling = MIN(ib->qp_init.cap.max_send_wr, ib->send_cq_size) / 2;
else
ib->periodic_signalling = periodic_signalling;
// If node will send data, set remote address
if (ib->is_source) {
// Translate address info
char* ip_adr = strtok(remote, ":");
char* port = strtok(NULL, ":");
ret = getaddrinfo(ip_adr, port, NULL, &ib->conn.dst_addr);
if (ret)
error("Failed to resolve remote address '%s' of node %s: %s",
remote, node_name(n), gai_strerror(ret));
debug(LOG_IB | 4, "Translated %s:%s to a struct addrinfo", ip_adr, port);
}
return 0;
}
int ib_check(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
info("Starting check of node %s", node_name(n));
// Check if read substraction makes sense
if (ib->conn.buffer_subtraction < 2 * n->in.vectorize)
error("The buffer substraction value must be bigger than 2 * in.vectorize");
if (ib->conn.buffer_subtraction >= ib->qp_init.cap.max_recv_wr - n->in.vectorize)
error("The buffer substraction value cannot be bigger than in.max_wrs - in.vectorize");
// Check if the set value is a power of 2, and warn the user if this is not the case
int max_send_pow = (int) pow(2, ceil(log2(ib->qp_init.cap.max_send_wr)));
int max_recv_pow = (int) pow(2, ceil(log2(ib->qp_init.cap.max_recv_wr)));
if (ib->qp_init.cap.max_send_wr != max_send_pow) {
warn("Max nr. of send WRs (%i) is not a power of 2! It will be changed to a power of 2: %i",
ib->qp_init.cap.max_send_wr, max_send_pow);
// Change it now, because otherwise errors are possible in ib_start().
ib->qp_init.cap.max_send_wr = max_send_pow;
}
if (ib->qp_init.cap.max_recv_wr != max_recv_pow) {
warn("Max nr. of recv WRs (%i) is not a power of 2! It will be changed to a power of 2: %i",
ib->qp_init.cap.max_recv_wr, max_recv_pow);
// Change it now, because otherwise errors are possible in ib_start().
ib->qp_init.cap.max_recv_wr = max_recv_pow;
}
// Check maximum size of max_recv_wr and max_send_wr
if (ib->qp_init.cap.max_send_wr > 8192)
warn("Max number of send WRs (%i) is bigger than send queue!", ib->qp_init.cap.max_send_wr);
if (ib->qp_init.cap.max_recv_wr > 8192)
warn("Max number of receive WRs (%i) is bigger than send queue!", ib->qp_init.cap.max_recv_wr);
// Warn user if he changed the default inline value
if (ib->qp_init.cap.max_inline_data != 0)
warn("You changed the default value of max_inline_data. This might influence the maximum number "
"of outstanding Work Requests in the Queue Pair and can be a reason for the Queue Pair creation to fail");
info("Finished check of node %s", node_name(n));
return 0;
}
char * ib_print(struct node *n)
{
return 0;
}
int ib_destroy(struct node *n)
{
return 0;
}
static void ib_create_bind_id(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
// Create rdma_cm_id
/**
* The unreliable connected mode is officially not supported by the rdma_cm library. Only the Reliable
* Connected mode (RDMA_PS_TCP) and the Unreliable Datagram mode (RDMA_PS_UDP). Although it is not officially
* supported, it is possible to use it with a few small adaptions to the sourcecode. To enable the
* support for UC connections follow the steps below:
*
* 1. git clone https://github.com/linux-rdma/rdma-core
* 2. cd rdma-core
* 2. Edit librdmacm/cma.c and remove the keyword 'static' in front of:
*
* static int rdma_create_id2(struct rdma_event_channel *channel,
* struct rdma_cm_id **id, void *context,
* enum rdma_port_space ps, enum ibv_qp_type qp_type)
*
* 3. Edit librdmacm/rdma_cma.h and add the following two entries to the file:
*
* #define RDMA_CMA_H_CUSTOM
*
* int rdma_create_id2(struct rdma_event_channel *channel,
* struct rdma_cm_id **id, void *context,
* enum rdma_port_space ps, enum ibv_qp_type qp_type);
*
* 4. Edit librdmacm/librdmacm.map and add a new line with:
*
* rdma_create_id2
*
* 5. ./build.sh
* 6. cd build && sudo make install
*
*/
#ifdef RDMA_CMA_H_CUSTOM
ret = rdma_create_id2(ib->ctx.ec, &ib->ctx.id, NULL, ib->conn.port_space, ib->qp_init.qp_type);
#else
ret = rdma_create_id(ib->ctx.ec, &ib->ctx.id, NULL, ib->conn.port_space);
#endif
if (ret)
error("Failed to create rdma_cm_id of node %s: %s", node_name(n), gai_strerror(ret));
debug(LOG_IB | 3, "Created rdma_cm_id");
// Bind rdma_cm_id to the HCA
ret = rdma_bind_addr(ib->ctx.id, ib->conn.src_addr->ai_addr);
if (ret)
error("Failed to bind to local device of node %s: %s",
node_name(n), gai_strerror(ret));
debug(LOG_IB | 3, "Bound rdma_cm_id to Infiniband device");
// The ID will be overwritten for the target. If the event type is
// RDMA_CM_EVENT_CONNECT_REQUEST, >then this references a new id for
// that communication.
ib->ctx.listen_id = ib->ctx.id;
}
static void ib_continue_as_listen(struct node *n, struct rdma_cm_event *event)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
if (ib->conn.use_fallback)
warn("Trying to continue as listening node");
else
error("Cannot establish a connection with remote host! If you want that %s tries to "
"continue as listening node in such cases, set use_fallback = true in the configuration",
node_name(n));
n->state = STATE_STARTED;
// Acknowledge event
rdma_ack_cm_event(event);
// Destroy ID
rdma_destroy_id(ib->ctx.listen_id);
// Create rdma_cm_id and bind to device
ib_create_bind_id(n);
// Listen to id for events
ret = rdma_listen(ib->ctx.listen_id, 10);
if (ret)
error("Failed to listen to rdma_cm_id on node %s", node_name(n));
// Node is not a source (and will not send data
ib->is_source = 0;
info("Node %s is set to listening mode", node_name(n));
}
void * ib_rdma_cm_event_thread(void *n)
{
struct node *node = (struct node *) n;
struct infiniband *ib = (struct infiniband *) node->_vd;
struct rdma_cm_event *event;
int ret = 0;
debug(LOG_IB | 1, "Started rdma_cm_event thread of node %s", node_name(node));
// Wait until node is completely started
while (node->state != STATE_STARTED);
// Monitor event channel
while (rdma_get_cm_event(ib->ctx.ec, &event) == 0) {
debug(LOG_IB | 2, "Received communication event: %s", rdma_event_str(event->event));
switch(event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
ret = ib_addr_resolved(n);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
warn("Address resolution (rdma_resolve_addr) failed!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
ret = ib_route_resolved(n);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
warn("Route resolution (rdma_resovle_route) failed!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_UNREACHABLE:
warn("Remote server unreachable!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_CONNECT_REQUEST:
ret = ib_connect_request(n, event->id);
// A target UDP node will never really connect. In order to receive data,
// we set it to connected after it answered the connection request
// with rdma_connect.
if (ib->conn.port_space == RDMA_PS_UDP && !ib->is_source)
node->state = STATE_CONNECTED;
else
node->state = STATE_PENDING_CONNECT;
break;
case RDMA_CM_EVENT_CONNECT_ERROR:
warn("An error has occurred trying to establish a connection!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_REJECTED:
warn("Connection request or response was rejected by the remote end point!");
ib_continue_as_listen(n, event);
break;
case RDMA_CM_EVENT_ESTABLISHED:
// If the connection is unreliable connectionless, set appropriate variables
if (ib->conn.port_space == RDMA_PS_UDP) {
ib->conn.ud.ud = event->param.ud;
ib->conn.ud.ah = ibv_create_ah(ib->ctx.pd, &ib->conn.ud.ud.ah_attr);
}
node->state = STATE_CONNECTED;
info("Connection established in node %s", node_name(n));
break;
case RDMA_CM_EVENT_DISCONNECTED:
node->state = STATE_STARTED;
ret = ib_disconnect(n);
if (!ret)
info("Host disconnected. Ready to accept new connections.");
break;
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
break;
default:
error("Unknown event occurred: %u", event->event);
}
rdma_ack_cm_event(event);
if (ret)
break;
}
return NULL;
}
int ib_start(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Started ib_start");
// Create event channel
ib->ctx.ec = rdma_create_event_channel();
if (!ib->ctx.ec)
error("Failed to create event channel in node %s!", node_name(n));
debug(LOG_IB | 3, "Created event channel");
// Create rdma_cm_id and bind to device
ib_create_bind_id(n);
debug(LOG_IB | 3, "Initialized Work Completion Buffer");
// Resolve address or listen to rdma_cm_id
if (ib->is_source) {
// Resolve address
ret = rdma_resolve_addr(ib->ctx.id, NULL, ib->conn.dst_addr->ai_addr, ib->conn.timeout);
if (ret)
error("Failed to resolve remote address after %ims of node %s: %s",
ib->conn.timeout, node_name(n), gai_strerror(ret));
}
else {
// Listen on rdma_cm_id for events
ret = rdma_listen(ib->ctx.listen_id, 10);
if (ret)
error("Failed to listen to rdma_cm_id on node %s", node_name(n));
debug(LOG_IB | 3, "Started to listen to rdma_cm_id");
}
//Allocate protection domain
ib->ctx.pd = ibv_alloc_pd(ib->ctx.id->verbs);
if (!ib->ctx.pd)
error("Could not allocate protection domain in node %s", node_name(n));
debug(LOG_IB | 3, "Allocated Protection Domain");
// Allocate space for 40 Byte GHR. We don't use this.
if (ib->conn.port_space == RDMA_PS_UDP) {
ib->conn.ud.grh_ptr = alloc(GRH_SIZE);
ib->conn.ud.grh_mr = ibv_reg_mr(ib->ctx.pd, ib->conn.ud.grh_ptr, GRH_SIZE, IBV_ACCESS_LOCAL_WRITE);
}
// Several events should occur on the event channel, to make
// sure the nodes are succesfully connected.
debug(LOG_IB | 1, "Starting to monitor events on rdma_cm_id");
//Create thread to monitor rdma_cm_event channel
ret = pthread_create(&ib->conn.rdma_cm_event_thread, NULL, ib_rdma_cm_event_thread, n);
if (ret)
error("Failed to create thread to monitor rdma_cm events in node %s: %s",
node_name(n), gai_strerror(ret));
return 0;
}
int ib_stop(struct node *n)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
int ret;
debug(LOG_IB | 1, "Called ib_stop");
ib->stopThreads = 1;
// Call RDMA disconnect function
// Will flush all outstanding WRs to the Completion Queue and
// will call RDMA_CM_EVENT_DISCONNECTED if that is done.
if (n->state == STATE_CONNECTED && ib->conn.port_space != RDMA_PS_UDP) {
ret = rdma_disconnect(ib->ctx.id);
if (ret)
error("Error while calling rdma_disconnect in node %s: %s",
node_name(n), gai_strerror(ret));
debug(LOG_IB | 3, "Called rdma_disconnect");
}
else {
pthread_cancel(ib->conn.rdma_cm_event_thread);
debug(LOG_IB | 3, "Called pthread_cancel() on communication management thread.");
}
info("Disconnecting... Waiting for threads to join.");
// Wait for event thread to join
ret = pthread_join(ib->conn.rdma_cm_event_thread, NULL);
if (ret)
error("Error while joining rdma_cm_event_thread in node %s: %i", node_name(n), ret);
debug(LOG_IB | 3, "Joined rdma_cm_event_thread");
// Destroy RDMA CM ID
rdma_destroy_id(ib->ctx.id);
debug(LOG_IB | 3, "Destroyed rdma_cm_id");
// Dealloc Protection Domain
ibv_dealloc_pd(ib->ctx.pd);
debug(LOG_IB | 3, "Destroyed protection domain");
// Destroy event channel
rdma_destroy_event_channel(ib->ctx.ec);
debug(LOG_IB | 3, "Destroyed event channel");
info("Successfully stopped %s", node_name(n));
return 0;
}
int ib_read(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_wc wc[cnt];
struct ibv_recv_wr wr[cnt], *bad_wr = NULL;
struct ibv_sge sge[cnt][ib->qp_init.cap.max_recv_sge];
struct ibv_mr *mr;
struct timespec ts_receive;
int ret = 0, wcs = 0, read_values = 0, max_wr_post;
debug(LOG_IB | 15, "ib_read is called");
if (n->state == STATE_CONNECTED || n->state == STATE_PENDING_CONNECT) {
max_wr_post = cnt;
// Poll Completion Queue
// If we've already posted enough receive WRs, try to pull cnt
if (ib->conn.available_recv_wrs >= (ib->qp_init.cap.max_recv_wr - ib->conn.buffer_subtraction) ) {
for (int i = 0;; i++) {
if (i % CHK_PER_ITER == CHK_PER_ITER - 1) pthread_testcancel();
// If IB node disconnects or if it is still in STATE_PENDING_CONNECT, ib_read
// should return immediately if this condition holds
if (n->state != STATE_CONNECTED) return 0;
wcs = ibv_poll_cq(ib->ctx.recv_cq, cnt, wc);
if (wcs) {
// Get time directly after something arrived in Completion Queue
ts_receive = time_now();
debug(LOG_IB | 10, "Received %i Work Completions", wcs);
read_values = wcs; // Value to return
max_wr_post = wcs; // Make space free in smps[]
break;
}
}
// All samples (wcs * received + unposted) should be released. Let
// *release be equal to allocated.
//
// This is set in the framework, before this function was called
}
else {
ib->conn.available_recv_wrs += max_wr_post;
*release = 0; // While we fill the receive queue, we always use all samples
}
// Get Memory Region
mr = memory_ib_get_mr(pool_buffer(sample_pool(smps[0])));
for (int i = 0; i < max_wr_post; i++) {
int j = 0;
// Prepare receive Scatter/Gather element
// First 40 byte of UD data are GRH and unused in our case
if (ib->conn.port_space == RDMA_PS_UDP) {
sge[i][j].addr = (uint64_t) ib->conn.ud.grh_ptr;
sge[i][j].length = GRH_SIZE;
sge[i][j].lkey = ib->conn.ud.grh_mr->lkey;
j++;
}
// Sequence
sge[i][j].addr = (uint64_t) &smps[i]->sequence;
sge[i][j].length = sizeof(smps[i]->sequence);
sge[i][j].lkey = mr->lkey;
j++;
// Timespec origin
sge[i][j].addr = (uint64_t) &smps[i]->ts.origin;
sge[i][j].length = sizeof(smps[i]->ts.origin);
sge[i][j].lkey = mr->lkey;
j++;
sge[i][j].addr = (uint64_t) &smps[i]->data;
sge[i][j].length = SAMPLE_DATA_LENGTH(DEFAULT_SAMPLE_LENGTH);
sge[i][j].lkey = mr->lkey;
j++;
// Prepare a receive Work Request
wr[i].wr_id = (uintptr_t) smps[i];
wr[i].next = &wr[i+1];
wr[i].sg_list = sge[i];
wr[i].num_sge = j;
}
wr[max_wr_post-1].next = NULL;
debug(LOG_IB | 5, "Prepared %i new receive Work Requests", max_wr_post);
debug(LOG_IB | 5, "%i receive Work Requests in Receive Queue", ib->conn.available_recv_wrs);
// Post list of Work Requests
ret = ibv_post_recv(ib->ctx.id->qp, &wr[0], &bad_wr);
if (ret)
error("Was unable to post receive WR in node %s: %i, bad WR ID: 0x%lx",
node_name(n), ret, bad_wr->wr_id);
debug(LOG_IB | 10, "Succesfully posted receive Work Requests");
// Doesn't start if wcs == 0
for (int j = 0; j < wcs; j++) {
if ( !( (wc[j].opcode & IBV_WC_RECV) && wc[j].status == IBV_WC_SUCCESS) ) {
// Drop all values, we don't know where the error occured
read_values = 0;
}
if (wc[j].status == IBV_WC_WR_FLUSH_ERR)
debug(LOG_IB | 5, "Received IBV_WC_WR_FLUSH_ERR (ib_read). Ignore it.");
else if (wc[j].status != IBV_WC_SUCCESS)
warn("Work Completion status was not IBV_WC_SUCCES in node %s: %i",
node_name(n), wc[j].status);
// 32 byte of meta data is always transferred. We should substract it.
// Furthermore, in case of an unreliable connection, a 40 byte
// global routing header is transferred. This should be substracted as well.
int correction = (ib->conn.port_space == RDMA_PS_UDP) ? META_GRH_SIZE : META_SIZE;
smps[j] = (struct sample *) (wc[j].wr_id);
smps[j]->length = SAMPLE_NUMBER_OF_VALUES(wc[j].byte_len - correction);
smps[j]->ts.received = ts_receive;
smps[j]->flags = (SAMPLE_HAS_TS_ORIGIN | SAMPLE_HAS_TS_RECEIVED | SAMPLE_HAS_SEQUENCE);
}
}
return read_values;
}
int ib_write(struct node *n, struct sample *smps[], unsigned cnt, unsigned *release)
{
struct infiniband *ib = (struct infiniband *) n->_vd;
struct ibv_send_wr wr[cnt], *bad_wr = NULL;
struct ibv_sge sge[cnt][ib->qp_init.cap.max_recv_sge];
struct ibv_wc wc[cnt];
struct ibv_mr *mr;
int ret;
int sent = 0; //Used for first loop: prepare work requests to post to send queue
debug(LOG_IB | 10, "ib_write is called");
if (n->state == STATE_CONNECTED) {
*release = 0;
// First, write
// Get Memory Region
mr = memory_ib_get_mr(pool_buffer(sample_pool(smps[0])));
for (sent = 0; sent < cnt; sent++) {
int j = 0;
// Set Scatter/Gather element to data of sample
// Sequence
sge[sent][j].addr = (uint64_t) &smps[sent]->sequence;
sge[sent][j].length = sizeof(smps[sent]->sequence);
sge[sent][j].lkey = mr->lkey;
j++;
// Timespec origin
sge[sent][j].addr = (uint64_t) &smps[sent]->ts.origin;
sge[sent][j].length = sizeof(smps[sent]->ts.origin);
sge[sent][j].lkey = mr->lkey;
j++;
// Actual Payload
sge[sent][j].addr = (uint64_t) &smps[sent]->data;
sge[sent][j].length = SAMPLE_DATA_LENGTH(smps[sent]->length);
sge[sent][j].lkey = mr->lkey;
j++;
// Check if connection is connected or unconnected and set appropriate values
if (ib->conn.port_space == RDMA_PS_UDP) {
wr[sent].wr.ud.ah = ib->conn.ud.ah;
wr[sent].wr.ud.remote_qkey = ib->conn.ud.ud.qkey;
wr[sent].wr.ud.remote_qpn = ib->conn.ud.ud.qp_num;
}
// Check if data can be send inline
// 32 byte meta data is always send.
// Once every max_send_wr iterations a signal must be generated. Since we would need
// an additional buffer if we were sending inlines with IBV_SEND_SIGNALED, we prefer
// to send one samples every max_send_wr NOT inline (which thus generates a signal)
int send_inline = ((sge[sent][j-1].length + META_SIZE) < ib->qp_init.cap.max_inline_data)
&& !(++ib->signalling_counter % ib->periodic_signalling) ?
ib->conn.send_inline : 0;
debug(LOG_IB | 10, "Sample will be send inline [0/1]: %i", send_inline);
// Set Send Work Request
wr[sent].wr_id = (uintptr_t) smps[sent];
wr[sent].sg_list = sge[sent];
wr[sent].num_sge = j;
wr[sent].next = &wr[sent+1];
wr[sent].send_flags = send_inline ? IBV_SEND_INLINE : IBV_SEND_SIGNALED;
wr[sent].opcode = IBV_WR_SEND;
}
debug(LOG_IB | 10, "Prepared %i send Work Requests", cnt);
wr[cnt-1].next = NULL;
// Send linked list of Work Requests
ret = ibv_post_send(ib->ctx.id->qp, wr, &bad_wr);
debug(LOG_IB | 4, "Posted send Work Requests");
// Reorder list. Place inline and unposted samples to the top
// m will always be equal or smaller than *release
for (int m = 0; m < cnt; m++) {
// We can't use wr_id as identifier, since it is 0 for inline
// elements
if (ret && (wr[m].sg_list == bad_wr->sg_list)) {
// The remaining work requests will be bad. Ripple through list
// and prepare them to be released
debug(LOG_IB | 4, "Bad WR occured with ID: 0x%lx and S/G address: 0x%px: %i",
bad_wr->wr_id, bad_wr->sg_list, ret);
while (1) {
smps[*release] = smps[m];
(*release)++; // Increment number of samples to be released
sent--; // Decrement the number of succesfully posted elements
if (++m == cnt) break;
}
}
else if (wr[m].send_flags & IBV_SEND_INLINE) {
smps[*release] = smps[m];
(*release)++;
}
}
debug(LOG_IB | 4, "%i samples will be released (before WC)", *release);
// Try to grab as many CQEs from CQ as there is space in *smps[]
ret = ibv_poll_cq(ib->ctx.send_cq, cnt - *release, wc);
for (int i = 0; i < ret; i++) {
if (wc[i].status != IBV_WC_SUCCESS && wc[i].status != IBV_WC_WR_FLUSH_ERR)
warn("Work Completion status was not IBV_WC_SUCCES in node %s: %i",
node_name(n), wc[i].status);
smps[*release] = (struct sample *) (wc[i].wr_id);
(*release)++;
}
debug(LOG_IB | 4, "%i samples will be released (after WC)", *release);
}
return sent;
}
int ib_fd(struct node *n)
{
return 0;
}
static struct plugin p = {
.name = "infiniband",
.description = "Infiniband interface (libibverbs, librdmacm)",
.type = PLUGIN_TYPE_NODE,
.node = {
.vectorize = 0,
.size = sizeof(struct infiniband),
.pool_size = 8192,
.reverse = ib_reverse,
.parse = ib_parse,
.check = ib_check,
.print = ib_print,
.start = ib_start,
.destroy = ib_destroy,
.stop = ib_stop,
.read = ib_read,
.write = ib_write,
.fd = ib_fd,
.memory_type = memory_ib
}
};
REGISTER_PLUGIN(&p)
LIST_INIT_STATIC(&p.node.instances)