mirror of
https://git.rwth-aachen.de/acs/public/villas/node/
synced 2025-03-16 00:00:02 +01:00
455 lines
12 KiB
C++
455 lines
12 KiB
C++
/** DFT hook.
|
|
*
|
|
* @author Manuel Pitz <manuel.pitz@eonerc.rwth-aachen.de>
|
|
* @copyright 2014-2020, Institute for Automation of Complex Power Systems, EONERC
|
|
* @license GNU General Public License (version 3)
|
|
*
|
|
* VILLASnode
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*********************************************************************************/
|
|
|
|
/** @addtogroup hooks Hook functions
|
|
* @{
|
|
*/
|
|
|
|
#include <cstring>
|
|
#include "villas/dumper.hpp"
|
|
#include <villas/hook.hpp>
|
|
#include <villas/path.h>
|
|
#include <villas/sample.h>
|
|
#include <villas/io.h>
|
|
#include <villas/plugin.h>
|
|
#include <complex>
|
|
|
|
|
|
namespace villas {
|
|
namespace node {
|
|
|
|
class DftHook : public Hook {
|
|
|
|
protected:
|
|
enum paddingType {
|
|
ZERO,
|
|
SIG_REPEAT
|
|
};
|
|
|
|
enum windowType {
|
|
NONE,
|
|
FLATTOP,
|
|
HANN,
|
|
HAMMING
|
|
};
|
|
|
|
Dumper* origSigSync;
|
|
Dumper* ppsSigSync;
|
|
Dumper* windowdSigSync;
|
|
Dumper* phasorPhase;
|
|
Dumper* phasorAmpitude;
|
|
Dumper* phasorFreq;
|
|
|
|
windowType window_type;
|
|
paddingType padding_type;
|
|
|
|
struct format_type *format;
|
|
|
|
double* smp_memory;
|
|
double* pps_memory;
|
|
std::complex<double>** dftMatrix;
|
|
std::complex<double>* dftResults;
|
|
double* filterWindowCoefficents;
|
|
double* absDftResults;
|
|
double* absDftFreqs;
|
|
|
|
uint64_t dftCalcCnt;
|
|
uint sample_rate;
|
|
double start_freqency;
|
|
double end_freqency;
|
|
double frequency_resolution;
|
|
uint dft_rate;
|
|
uint window_size;
|
|
uint window_multiplier;//multiplyer for the window to achieve frequency resolution
|
|
uint freq_count;//number of requency bins that are calculated
|
|
bool sync_dft;
|
|
|
|
uint64_t smp_mem_pos;
|
|
uint64_t last_sequence;
|
|
|
|
|
|
std::complex<double> omega;
|
|
std::complex<double> M_I;
|
|
|
|
|
|
double window_corretion_factor;
|
|
timespec last_dft_cal;
|
|
|
|
|
|
|
|
public:
|
|
DftHook(struct vpath *p, struct vnode *n, int fl, int prio, bool en = true) :
|
|
Hook(p, n, fl, prio, en),
|
|
window_type(windowType::NONE),
|
|
padding_type(paddingType::ZERO),
|
|
dftCalcCnt(0),
|
|
sample_rate(0),
|
|
start_freqency(0),
|
|
end_freqency(0),
|
|
frequency_resolution(0),
|
|
dft_rate(0),
|
|
window_size(0),
|
|
window_multiplier(0),
|
|
freq_count(0),
|
|
sync_dft(0),
|
|
smp_mem_pos(0),
|
|
last_sequence(0),
|
|
M_I(0.0,1.0),
|
|
window_corretion_factor(0),
|
|
last_dft_cal({0,0})
|
|
{
|
|
format = format_type_lookup("villas.human");
|
|
|
|
origSigSync = new Dumper("/tmp/plot/origSigSync");
|
|
ppsSigSync = new Dumper("/tmp/plot/ppsSigSync");
|
|
windowdSigSync = new Dumper("/tmp/plot/windowdSigSync");
|
|
phasorPhase = new Dumper("/tmp/plot/phasorPhase");
|
|
phasorAmpitude = new Dumper("/tmp/plot/phasorAmpitude");
|
|
phasorFreq = new Dumper("/tmp/plot/phasorFreq");
|
|
|
|
}
|
|
|
|
virtual void prepare(){
|
|
|
|
struct signal *freq_sig;
|
|
struct signal *ampl_sig;
|
|
struct signal *phase_sig;
|
|
|
|
/* Add signals */
|
|
freq_sig = signal_create("amplitude", nullptr, SignalType::FLOAT);
|
|
ampl_sig = signal_create("phase", nullptr, SignalType::FLOAT);
|
|
phase_sig = signal_create("frequency", nullptr, SignalType::FLOAT);
|
|
|
|
|
|
if (!freq_sig || !ampl_sig || !phase_sig)
|
|
throw RuntimeError("Failed to create new signals");
|
|
|
|
|
|
vlist_push(&signals, freq_sig);
|
|
vlist_push(&signals, ampl_sig);
|
|
vlist_push(&signals, phase_sig);
|
|
|
|
|
|
//offset = vlist_length(&signals) - 1;//needs to be cleaned up
|
|
|
|
|
|
window_multiplier = ceil( ( (double)sample_rate / window_size ) / frequency_resolution);//calculate how much zero padding ist needed for a needed resolution
|
|
|
|
|
|
freq_count = ceil( ( end_freqency - start_freqency ) / frequency_resolution) + 1;
|
|
|
|
//init sample memory
|
|
smp_memory = new double[window_size];
|
|
if (!smp_memory)
|
|
throw MemoryAllocationError();
|
|
|
|
for(uint i = 0; i < window_size; i++)
|
|
smp_memory[i] = 0;
|
|
|
|
|
|
pps_memory = new double[window_size];
|
|
if (!pps_memory)
|
|
throw MemoryAllocationError();
|
|
|
|
for(uint i = 0; i < window_size; i++)
|
|
pps_memory[i] = 0;
|
|
|
|
|
|
//init matrix of dft coeffients
|
|
dftMatrix = new std::complex<double>*[freq_count];
|
|
if (!dftMatrix)
|
|
throw MemoryAllocationError();
|
|
|
|
for(uint i = 0; i < freq_count; i++) {
|
|
dftMatrix[i] = new std::complex<double>[window_size * window_multiplier]();
|
|
if (!dftMatrix[i])
|
|
throw MemoryAllocationError();
|
|
}
|
|
|
|
dftResults = new std::complex<double>[freq_count]();
|
|
|
|
filterWindowCoefficents = new double[window_size];
|
|
|
|
absDftResults = new double[freq_count];
|
|
|
|
absDftFreqs = new double[freq_count];
|
|
for(uint i=0; i < freq_count; i++)
|
|
absDftFreqs[i] = start_freqency + i * frequency_resolution;
|
|
|
|
genDftMatrix();
|
|
calcWindow(window_type);
|
|
|
|
|
|
state = State::PREPARED;
|
|
|
|
}
|
|
|
|
|
|
virtual void start()
|
|
{
|
|
|
|
assert(state == State::PREPARED || state == State::STOPPED);
|
|
|
|
|
|
state = State::STARTED;
|
|
}
|
|
|
|
virtual void stop()
|
|
{
|
|
assert(state == State::STARTED);
|
|
|
|
|
|
state = State::STOPPED;
|
|
}
|
|
|
|
virtual void parse(json_t *cfg)
|
|
{
|
|
const char *padding_type_c = nullptr, *window_type_c = nullptr;
|
|
int ret;
|
|
json_error_t err;
|
|
|
|
assert(state != State::STARTED);
|
|
|
|
Hook::parse(cfg);
|
|
|
|
state = State::PARSED;
|
|
|
|
ret = json_unpack_ex(cfg, &err, 0, "{ s?: i, s?: F, s?: F, s?: F, s?: i , s?: i, s?: s, s?: s, s?: b}",
|
|
"sample_rate", &sample_rate,
|
|
"start_freqency", &start_freqency,
|
|
"end_freqency", &end_freqency,
|
|
"frequency_resolution", &frequency_resolution,
|
|
"dft_rate", &dft_rate,
|
|
"window_size", &window_size,
|
|
"window_type", &window_type_c,
|
|
"padding_type", &padding_type_c,
|
|
"sync", &sync_dft
|
|
|
|
);
|
|
|
|
if(!window_type_c) {
|
|
info("No Window type given, assume no windowing");
|
|
window_type = windowType::NONE;
|
|
} else if(strcmp(window_type_c, "flattop") == 0)
|
|
window_type = windowType::FLATTOP;
|
|
else if(strcmp(window_type_c, "hamming") == 0)
|
|
window_type = windowType::HAMMING;
|
|
else if(strcmp(window_type_c, "hann") == 0)
|
|
window_type = windowType::HANN;
|
|
else {
|
|
info("Window type %s not recognized, assume no windowing",window_type_c);
|
|
window_type = windowType::NONE;
|
|
}
|
|
|
|
if(!padding_type_c) {
|
|
info("No Padding type given, assume no zeropadding");
|
|
padding_type = paddingType::ZERO;
|
|
} else if(strcmp(padding_type_c, "signal_repeat") == 0) {
|
|
padding_type = paddingType::SIG_REPEAT;
|
|
} else {
|
|
info("Padding type %s not recognized, assume zero padding",padding_type_c);
|
|
padding_type = paddingType::ZERO;
|
|
}
|
|
|
|
|
|
if(end_freqency < 0 || end_freqency > sample_rate){
|
|
error("End frequency must be smaller than sample_rate (%i)",sample_rate);
|
|
ret = 1;
|
|
}
|
|
|
|
if(frequency_resolution > ((double)sample_rate/window_size)){
|
|
error("The maximum frequency resolution with smaple_rate:%i and window_site:%i is %f",sample_rate, window_size, ((double)sample_rate/window_size) );
|
|
ret = 1;
|
|
}
|
|
|
|
|
|
|
|
if (ret)
|
|
throw ConfigError(cfg, err, "node-config-hook-dft");
|
|
}
|
|
|
|
virtual Hook::Reason process(sample *smp)
|
|
{
|
|
assert(state == State::STARTED);
|
|
|
|
smp_memory[smp_mem_pos % window_size] = smp->data[0].f;
|
|
pps_memory[smp_mem_pos % window_size] = smp->data[1].f;
|
|
smp_mem_pos++ ;
|
|
|
|
bool runDft = false;
|
|
if( sync_dft ) {
|
|
if( last_dft_cal.tv_sec != smp->ts.origin.tv_sec )
|
|
runDft = true;
|
|
}
|
|
last_dft_cal = smp->ts.origin;
|
|
|
|
if( runDft ) {
|
|
calcDft(paddingType::ZERO);
|
|
double maxF = 0;
|
|
double maxA = 0;
|
|
int maxPos = 0;
|
|
|
|
|
|
for(uint i=0; i<freq_count; i++){
|
|
absDftResults[i] = abs(dftResults[i]) * 2 / (window_size * window_corretion_factor * ((padding_type == paddingType::ZERO)?1:window_multiplier) );
|
|
if(maxA < absDftResults[i]){
|
|
maxF = absDftFreqs[i];
|
|
maxA = absDftResults[i];
|
|
maxPos = i;
|
|
}
|
|
}
|
|
|
|
info("sec=%ld, nsec=%ld freq: %f \t phase: %f \t amplitude: %f",last_dft_cal.tv_sec, smp->ts.origin.tv_nsec, maxF, atan2(dftResults[maxPos].imag(), dftResults[maxPos].real()), (maxA / pow(2,1./2)) );
|
|
|
|
if(dftCalcCnt > 1) {
|
|
double tmpPhase = atan2(dftResults[maxPos].imag(), dftResults[maxPos].real());
|
|
phasorPhase->writeData(1,&tmpPhase);
|
|
//double tmpMaxA = maxA / pow(2,1./2);
|
|
//phasorAmpitude->writeData(1,&tmpMaxA);
|
|
phasorFreq->writeData(1,&maxF);
|
|
}
|
|
dftCalcCnt++;
|
|
}
|
|
|
|
|
|
if((smp->sequence - last_sequence) > 1 )
|
|
warning("Calculation is not Realtime. %li sampled missed",smp->sequence - last_sequence);
|
|
|
|
last_sequence = smp->sequence;
|
|
|
|
return Reason::OK;
|
|
}
|
|
|
|
virtual ~DftHook()
|
|
{
|
|
//delete smp_memory;
|
|
|
|
delete origSigSync;
|
|
delete ppsSigSync;
|
|
delete windowdSigSync;
|
|
delete phasorPhase;
|
|
delete phasorAmpitude;
|
|
delete phasorFreq;
|
|
|
|
}
|
|
|
|
void genDftMatrix(){
|
|
using namespace std::complex_literals;
|
|
|
|
omega = exp((-2 * M_PI * M_I) / (double)(window_size * window_multiplier));
|
|
uint startBin = floor( start_freqency / frequency_resolution );
|
|
|
|
|
|
for( uint i = 0; i < freq_count ; i++){
|
|
for( uint j=0 ; j < window_size * window_multiplier ; j++){
|
|
dftMatrix[i][j] = pow(omega, (i + startBin) * j);
|
|
}
|
|
}
|
|
}
|
|
|
|
void calcDft(paddingType padding){
|
|
|
|
|
|
//prepare sample window The following parts can be combined
|
|
double tmp_smp_window[window_size];
|
|
double tmp_smp_pps[window_size];
|
|
|
|
//uint lastEdge = 0;
|
|
//uint edgeCount = 0;
|
|
for(uint i = 0; i< window_size; i++){
|
|
tmp_smp_window[i] = smp_memory[( i + smp_mem_pos) % window_size];
|
|
tmp_smp_pps[i] = pps_memory[( i + smp_mem_pos) % window_size];
|
|
}
|
|
|
|
origSigSync->writeData(window_size,tmp_smp_window);
|
|
ppsSigSync->writeData(window_size,tmp_smp_pps);
|
|
|
|
if(dftCalcCnt > 1)
|
|
phasorAmpitude->writeData(1,&tmp_smp_window[window_size - 1]);
|
|
|
|
for(uint i = 0; i< window_size; i++) {
|
|
tmp_smp_window[i] *= filterWindowCoefficents[i];
|
|
}
|
|
windowdSigSync->writeData(window_size,tmp_smp_window);
|
|
//dumpData("/tmp/plot/signal_windowed",tmp_smp_window,window_size);
|
|
|
|
//dumpData("/tmp/plot/smp_window",smp_memory,window_size);
|
|
|
|
for( uint i=0; i < freq_count; i++){
|
|
dftResults[i] = 0;
|
|
for(uint j=0; j < window_size * window_multiplier; j++){
|
|
if(padding == paddingType::ZERO){
|
|
if(j < (window_size)){
|
|
dftResults[i]+= tmp_smp_window[j] * dftMatrix[i][j];
|
|
}else{
|
|
dftResults[i]+= 0;
|
|
}
|
|
}else if(padding == paddingType::SIG_REPEAT){//repeate samples
|
|
dftResults[i]+= tmp_smp_window[j % window_size] * dftMatrix[i][j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void calcWindow(windowType window_type_in){
|
|
|
|
|
|
if(window_type_in == windowType::FLATTOP){
|
|
for(uint i=0; i < window_size; i++){
|
|
filterWindowCoefficents[i] = 0.21557895
|
|
- 0.41663158 * cos(2 * M_PI * i / ( window_size ))
|
|
+ 0.277263158 * cos(4 * M_PI * i / ( window_size ))
|
|
- 0.083578947 * cos(6 * M_PI * i / ( window_size ))
|
|
+ 0.006947368 * cos(8 * M_PI * i / ( window_size ));
|
|
window_corretion_factor += filterWindowCoefficents[i];
|
|
}
|
|
}else if(window_type_in == windowType::HAMMING || window_type_in == windowType::HANN){
|
|
double a_0 = 0.5;//this is the hann window
|
|
if(window_type_in == windowType::HAMMING)
|
|
a_0 = 25./46;
|
|
|
|
for(uint i=0; i < window_size; i++){
|
|
filterWindowCoefficents[i] = a_0
|
|
- (1 - a_0) * cos(2 * M_PI * i / ( window_size ));
|
|
window_corretion_factor += filterWindowCoefficents[i];
|
|
}
|
|
}else{
|
|
for(uint i=0; i < window_size; i++){
|
|
filterWindowCoefficents[i] = 1;
|
|
window_corretion_factor += filterWindowCoefficents[i];
|
|
}
|
|
}
|
|
window_corretion_factor /= window_size;
|
|
//dumpData("/tmp/plot/filter_window",filterWindowCoefficents,window_size);
|
|
}
|
|
};
|
|
|
|
/* Register hook */
|
|
static char n[] = "dft";
|
|
static char d[] = "This hook calculates the dft on a window";
|
|
static HookPlugin<DftHook, n, d, (int) Hook::Flags::NODE_READ | (int) Hook::Flags::NODE_WRITE | (int) Hook::Flags::PATH> p;
|
|
|
|
} /* namespace node */
|
|
} /* namespace villas */
|
|
|
|
/** @} */
|
|
|