1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-16 00:00:02 +01:00
VILLASnode/lib/hooks/dft.cpp

455 lines
12 KiB
C++

/** DFT hook.
*
* @author Manuel Pitz <manuel.pitz@eonerc.rwth-aachen.de>
* @copyright 2014-2020, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
/** @addtogroup hooks Hook functions
* @{
*/
#include <cstring>
#include "villas/dumper.hpp"
#include <villas/hook.hpp>
#include <villas/path.h>
#include <villas/sample.h>
#include <villas/io.h>
#include <villas/plugin.h>
#include <complex>
namespace villas {
namespace node {
class DftHook : public Hook {
protected:
enum paddingType {
ZERO,
SIG_REPEAT
};
enum windowType {
NONE,
FLATTOP,
HANN,
HAMMING
};
Dumper* origSigSync;
Dumper* ppsSigSync;
Dumper* windowdSigSync;
Dumper* phasorPhase;
Dumper* phasorAmpitude;
Dumper* phasorFreq;
windowType window_type;
paddingType padding_type;
struct format_type *format;
double* smp_memory;
double* pps_memory;
std::complex<double>** dftMatrix;
std::complex<double>* dftResults;
double* filterWindowCoefficents;
double* absDftResults;
double* absDftFreqs;
uint64_t dftCalcCnt;
uint sample_rate;
double start_freqency;
double end_freqency;
double frequency_resolution;
uint dft_rate;
uint window_size;
uint window_multiplier;//multiplyer for the window to achieve frequency resolution
uint freq_count;//number of requency bins that are calculated
bool sync_dft;
uint64_t smp_mem_pos;
uint64_t last_sequence;
std::complex<double> omega;
std::complex<double> M_I;
double window_corretion_factor;
timespec last_dft_cal;
public:
DftHook(struct vpath *p, struct vnode *n, int fl, int prio, bool en = true) :
Hook(p, n, fl, prio, en),
window_type(windowType::NONE),
padding_type(paddingType::ZERO),
dftCalcCnt(0),
sample_rate(0),
start_freqency(0),
end_freqency(0),
frequency_resolution(0),
dft_rate(0),
window_size(0),
window_multiplier(0),
freq_count(0),
sync_dft(0),
smp_mem_pos(0),
last_sequence(0),
M_I(0.0,1.0),
window_corretion_factor(0),
last_dft_cal({0,0})
{
format = format_type_lookup("villas.human");
origSigSync = new Dumper("/tmp/plot/origSigSync");
ppsSigSync = new Dumper("/tmp/plot/ppsSigSync");
windowdSigSync = new Dumper("/tmp/plot/windowdSigSync");
phasorPhase = new Dumper("/tmp/plot/phasorPhase");
phasorAmpitude = new Dumper("/tmp/plot/phasorAmpitude");
phasorFreq = new Dumper("/tmp/plot/phasorFreq");
}
virtual void prepare(){
struct signal *freq_sig;
struct signal *ampl_sig;
struct signal *phase_sig;
/* Add signals */
freq_sig = signal_create("amplitude", nullptr, SignalType::FLOAT);
ampl_sig = signal_create("phase", nullptr, SignalType::FLOAT);
phase_sig = signal_create("frequency", nullptr, SignalType::FLOAT);
if (!freq_sig || !ampl_sig || !phase_sig)
throw RuntimeError("Failed to create new signals");
vlist_push(&signals, freq_sig);
vlist_push(&signals, ampl_sig);
vlist_push(&signals, phase_sig);
//offset = vlist_length(&signals) - 1;//needs to be cleaned up
window_multiplier = ceil( ( (double)sample_rate / window_size ) / frequency_resolution);//calculate how much zero padding ist needed for a needed resolution
freq_count = ceil( ( end_freqency - start_freqency ) / frequency_resolution) + 1;
//init sample memory
smp_memory = new double[window_size];
if (!smp_memory)
throw MemoryAllocationError();
for(uint i = 0; i < window_size; i++)
smp_memory[i] = 0;
pps_memory = new double[window_size];
if (!pps_memory)
throw MemoryAllocationError();
for(uint i = 0; i < window_size; i++)
pps_memory[i] = 0;
//init matrix of dft coeffients
dftMatrix = new std::complex<double>*[freq_count];
if (!dftMatrix)
throw MemoryAllocationError();
for(uint i = 0; i < freq_count; i++) {
dftMatrix[i] = new std::complex<double>[window_size * window_multiplier]();
if (!dftMatrix[i])
throw MemoryAllocationError();
}
dftResults = new std::complex<double>[freq_count]();
filterWindowCoefficents = new double[window_size];
absDftResults = new double[freq_count];
absDftFreqs = new double[freq_count];
for(uint i=0; i < freq_count; i++)
absDftFreqs[i] = start_freqency + i * frequency_resolution;
genDftMatrix();
calcWindow(window_type);
state = State::PREPARED;
}
virtual void start()
{
assert(state == State::PREPARED || state == State::STOPPED);
state = State::STARTED;
}
virtual void stop()
{
assert(state == State::STARTED);
state = State::STOPPED;
}
virtual void parse(json_t *cfg)
{
const char *padding_type_c = nullptr, *window_type_c = nullptr;
int ret;
json_error_t err;
assert(state != State::STARTED);
Hook::parse(cfg);
state = State::PARSED;
ret = json_unpack_ex(cfg, &err, 0, "{ s?: i, s?: F, s?: F, s?: F, s?: i , s?: i, s?: s, s?: s, s?: b}",
"sample_rate", &sample_rate,
"start_freqency", &start_freqency,
"end_freqency", &end_freqency,
"frequency_resolution", &frequency_resolution,
"dft_rate", &dft_rate,
"window_size", &window_size,
"window_type", &window_type_c,
"padding_type", &padding_type_c,
"sync", &sync_dft
);
if(!window_type_c) {
info("No Window type given, assume no windowing");
window_type = windowType::NONE;
} else if(strcmp(window_type_c, "flattop") == 0)
window_type = windowType::FLATTOP;
else if(strcmp(window_type_c, "hamming") == 0)
window_type = windowType::HAMMING;
else if(strcmp(window_type_c, "hann") == 0)
window_type = windowType::HANN;
else {
info("Window type %s not recognized, assume no windowing",window_type_c);
window_type = windowType::NONE;
}
if(!padding_type_c) {
info("No Padding type given, assume no zeropadding");
padding_type = paddingType::ZERO;
} else if(strcmp(padding_type_c, "signal_repeat") == 0) {
padding_type = paddingType::SIG_REPEAT;
} else {
info("Padding type %s not recognized, assume zero padding",padding_type_c);
padding_type = paddingType::ZERO;
}
if(end_freqency < 0 || end_freqency > sample_rate){
error("End frequency must be smaller than sample_rate (%i)",sample_rate);
ret = 1;
}
if(frequency_resolution > ((double)sample_rate/window_size)){
error("The maximum frequency resolution with smaple_rate:%i and window_site:%i is %f",sample_rate, window_size, ((double)sample_rate/window_size) );
ret = 1;
}
if (ret)
throw ConfigError(cfg, err, "node-config-hook-dft");
}
virtual Hook::Reason process(sample *smp)
{
assert(state == State::STARTED);
smp_memory[smp_mem_pos % window_size] = smp->data[0].f;
pps_memory[smp_mem_pos % window_size] = smp->data[1].f;
smp_mem_pos++ ;
bool runDft = false;
if( sync_dft ) {
if( last_dft_cal.tv_sec != smp->ts.origin.tv_sec )
runDft = true;
}
last_dft_cal = smp->ts.origin;
if( runDft ) {
calcDft(paddingType::ZERO);
double maxF = 0;
double maxA = 0;
int maxPos = 0;
for(uint i=0; i<freq_count; i++){
absDftResults[i] = abs(dftResults[i]) * 2 / (window_size * window_corretion_factor * ((padding_type == paddingType::ZERO)?1:window_multiplier) );
if(maxA < absDftResults[i]){
maxF = absDftFreqs[i];
maxA = absDftResults[i];
maxPos = i;
}
}
info("sec=%ld, nsec=%ld freq: %f \t phase: %f \t amplitude: %f",last_dft_cal.tv_sec, smp->ts.origin.tv_nsec, maxF, atan2(dftResults[maxPos].imag(), dftResults[maxPos].real()), (maxA / pow(2,1./2)) );
if(dftCalcCnt > 1) {
double tmpPhase = atan2(dftResults[maxPos].imag(), dftResults[maxPos].real());
phasorPhase->writeData(1,&tmpPhase);
//double tmpMaxA = maxA / pow(2,1./2);
//phasorAmpitude->writeData(1,&tmpMaxA);
phasorFreq->writeData(1,&maxF);
}
dftCalcCnt++;
}
if((smp->sequence - last_sequence) > 1 )
warning("Calculation is not Realtime. %li sampled missed",smp->sequence - last_sequence);
last_sequence = smp->sequence;
return Reason::OK;
}
virtual ~DftHook()
{
//delete smp_memory;
delete origSigSync;
delete ppsSigSync;
delete windowdSigSync;
delete phasorPhase;
delete phasorAmpitude;
delete phasorFreq;
}
void genDftMatrix(){
using namespace std::complex_literals;
omega = exp((-2 * M_PI * M_I) / (double)(window_size * window_multiplier));
uint startBin = floor( start_freqency / frequency_resolution );
for( uint i = 0; i < freq_count ; i++){
for( uint j=0 ; j < window_size * window_multiplier ; j++){
dftMatrix[i][j] = pow(omega, (i + startBin) * j);
}
}
}
void calcDft(paddingType padding){
//prepare sample window The following parts can be combined
double tmp_smp_window[window_size];
double tmp_smp_pps[window_size];
//uint lastEdge = 0;
//uint edgeCount = 0;
for(uint i = 0; i< window_size; i++){
tmp_smp_window[i] = smp_memory[( i + smp_mem_pos) % window_size];
tmp_smp_pps[i] = pps_memory[( i + smp_mem_pos) % window_size];
}
origSigSync->writeData(window_size,tmp_smp_window);
ppsSigSync->writeData(window_size,tmp_smp_pps);
if(dftCalcCnt > 1)
phasorAmpitude->writeData(1,&tmp_smp_window[window_size - 1]);
for(uint i = 0; i< window_size; i++) {
tmp_smp_window[i] *= filterWindowCoefficents[i];
}
windowdSigSync->writeData(window_size,tmp_smp_window);
//dumpData("/tmp/plot/signal_windowed",tmp_smp_window,window_size);
//dumpData("/tmp/plot/smp_window",smp_memory,window_size);
for( uint i=0; i < freq_count; i++){
dftResults[i] = 0;
for(uint j=0; j < window_size * window_multiplier; j++){
if(padding == paddingType::ZERO){
if(j < (window_size)){
dftResults[i]+= tmp_smp_window[j] * dftMatrix[i][j];
}else{
dftResults[i]+= 0;
}
}else if(padding == paddingType::SIG_REPEAT){//repeate samples
dftResults[i]+= tmp_smp_window[j % window_size] * dftMatrix[i][j];
}
}
}
}
void calcWindow(windowType window_type_in){
if(window_type_in == windowType::FLATTOP){
for(uint i=0; i < window_size; i++){
filterWindowCoefficents[i] = 0.21557895
- 0.41663158 * cos(2 * M_PI * i / ( window_size ))
+ 0.277263158 * cos(4 * M_PI * i / ( window_size ))
- 0.083578947 * cos(6 * M_PI * i / ( window_size ))
+ 0.006947368 * cos(8 * M_PI * i / ( window_size ));
window_corretion_factor += filterWindowCoefficents[i];
}
}else if(window_type_in == windowType::HAMMING || window_type_in == windowType::HANN){
double a_0 = 0.5;//this is the hann window
if(window_type_in == windowType::HAMMING)
a_0 = 25./46;
for(uint i=0; i < window_size; i++){
filterWindowCoefficents[i] = a_0
- (1 - a_0) * cos(2 * M_PI * i / ( window_size ));
window_corretion_factor += filterWindowCoefficents[i];
}
}else{
for(uint i=0; i < window_size; i++){
filterWindowCoefficents[i] = 1;
window_corretion_factor += filterWindowCoefficents[i];
}
}
window_corretion_factor /= window_size;
//dumpData("/tmp/plot/filter_window",filterWindowCoefficents,window_size);
}
};
/* Register hook */
static char n[] = "dft";
static char d[] = "This hook calculates the dft on a window";
static HookPlugin<DftHook, n, d, (int) Hook::Flags::NODE_READ | (int) Hook::Flags::NODE_WRITE | (int) Hook::Flags::PATH> p;
} /* namespace node */
} /* namespace villas */
/** @} */