1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-16 00:00:02 +01:00
VILLASnode/lib/nodes/signal.c

322 lines
7.7 KiB
C

/** Node-type for signal generation.
*
* @file
* @author Steffen Vogel <stvogel@eonerc.rwth-aachen.de>
* @copyright 2017, Institute for Automation of Complex Power Systems, EONERC
* @license GNU General Public License (version 3)
*
* VILLASnode
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*********************************************************************************/
#include <math.h>
#include "node.h"
#include "plugin.h"
#include "nodes/signal.h"
enum signal_type signal_lookup_type(const char *type)
{
if (!strcmp(type, "random"))
return SIGNAL_TYPE_RANDOM;
else if (!strcmp(type, "sine"))
return SIGNAL_TYPE_SINE;
else if (!strcmp(type, "square"))
return SIGNAL_TYPE_SQUARE;
else if (!strcmp(type, "triangle"))
return SIGNAL_TYPE_TRIANGLE;
else if (!strcmp(type, "ramp"))
return SIGNAL_TYPE_RAMP;
else if (!strcmp(type, "counter"))
return SIGNAL_TYPE_COUNTER;
else if (!strcmp(type, "constant"))
return SIGNAL_TYPE_CONSTANT;
else if (!strcmp(type, "mixed"))
return SIGNAL_TYPE_MIXED;
else
return -1;
}
int signal_parse(struct node *n, json_t *cfg)
{
struct signal *s = n->_vd;
int ret;
const char *type = NULL;
json_error_t err;
s->rt = 1;
s->limit = -1;
s->values = 1;
s->rate = 10;
s->frequency = 1;
s->amplitude = 1;
s->stddev = 0.2;
s->offset = 0;
ret = json_unpack_ex(cfg, &err, 0, "{ s?: s, s?: b, s?: i, s?: i, s?: F, s?: F, s?: F, s?: F, s?: F }",
"signal", &type,
"realtime", &s->rt,
"limit", &s->limit,
"values", &s->values,
"rate", &s->rate,
"frequency", &s->frequency,
"amplitude", &s->amplitude,
"stddev", &s->stddev,
"offset", &s->offset
);
if (ret)
jerror(&err, "Failed to parse configuration of node %s", node_name(n));
if (type) {
ret = signal_lookup_type(type);
if (ret == -1)
error("Unknown signal type '%s' of node %s", type, node_name(n));
s->type = ret;
}
else
s->type = SIGNAL_TYPE_MIXED;
/* We know the expected number of values. */
n->samplelen = s->values;
return 0;
}
int signal_parse_cli(struct node *n, int argc, char *argv[])
{
char *type;
struct signal *s = n->_vd;
/* Default values */
s->rate = 10;
s->frequency = 1;
s->amplitude = 1;
s->stddev = 0.02;
s->type = SIGNAL_TYPE_MIXED;
s->rt = 1;
s->values = 1;
s->limit = -1;
s->offset = 0;
/* Parse optional command line arguments */
char c, *endptr;
while ((c = getopt(argc, argv, "v:r:f:l:a:D:no:")) != -1) {
switch (c) {
case 'n':
s->rt = 0;
break;
case 'l':
s->limit = strtoul(optarg, &endptr, 10);
goto check;
case 'v':
s->values = strtoul(optarg, &endptr, 10);
goto check;
case 'r':
s->rate = strtof(optarg, &endptr);
goto check;
case 'o':
s->offset = strtof(optarg, &endptr);
goto check;
case 'f':
s->frequency = strtof(optarg, &endptr);
goto check;
case 'a':
s->amplitude = strtof(optarg, &endptr);
goto check;
case 'D':
s->stddev = strtof(optarg, &endptr);
goto check;
case '?':
break;
}
continue;
check: if (optarg == endptr)
warn("Failed to parse parse option argument '-%c %s'", c, optarg);
}
if (argc != optind + 1)
return -1;
type = argv[optind];
int t = signal_lookup_type(type);
if (t == -1)
error("Invalid signal type: %s", type);
s->type = t;
/* We know the expected number of values. */
n->samplelen = s->values;
return 0;
}
int signal_open(struct node *n)
{
int ret;
struct signal *s = n->_vd;
s->counter = 0;
s->started = time_now();
s->last = alloc(sizeof(double) * s->values);
for (int i = 0; i < s->values; i++)
s->last[i] = s->offset;
/* Setup task */
if (s->rt) {
ret = task_init(&s->task, s->rate, CLOCK_MONOTONIC);
if (ret)
return ret;
}
return 0;
}
int signal_close(struct node *n)
{
int ret;
struct signal* s = n->_vd;
if (s->rt) {
ret = task_destroy(&s->task);
if (ret)
return ret;
}
free(s->last);
return 0;
}
int signal_read(struct node *n, struct sample *smps[], unsigned cnt)
{
struct signal *s = n->_vd;
struct sample *t = smps[0];
struct timespec ts;
int steps;
assert(cnt == 1);
/* Throttle output if desired */
if (s->rt) {
/* Block until 1/p->rate seconds elapsed */
steps = task_wait(&s->task);
if (steps > 1)
warn("Missed steps: %u", steps);
ts = time_now();
}
else {
struct timespec offset = time_from_double(s->counter * 1.0 / s->rate);
ts = time_add(&s->started, &offset);
steps = 1;
}
double running = time_delta(&s->started, &ts);
t->flags = SAMPLE_HAS_ORIGIN | SAMPLE_HAS_VALUES | SAMPLE_HAS_SEQUENCE;
t->ts.origin = ts;
t->sequence = s->counter;
t->length = n->samplelen;
for (int i = 0; i < MIN(s->values, t->capacity); i++) {
int rtype = (s->type != SIGNAL_TYPE_MIXED) ? s->type : i % 7;
switch (rtype) {
case SIGNAL_TYPE_CONSTANT: t->data[i].f = s->offset + s->amplitude; break;
case SIGNAL_TYPE_SINE: t->data[i].f = s->offset + s->amplitude * sin(running * s->frequency * 2 * M_PI); break;
case SIGNAL_TYPE_TRIANGLE: t->data[i].f = s->offset + s->amplitude * (fabs(fmod(running * s->frequency, 1) - .5) - 0.25) * 4; break;
case SIGNAL_TYPE_SQUARE: t->data[i].f = s->offset + s->amplitude * ( (fmod(running * s->frequency, 1) < .5) ? -1 : 1); break;
case SIGNAL_TYPE_RAMP: t->data[i].f = s->offset + s->amplitude * fmod(running, s->frequency); break;
case SIGNAL_TYPE_COUNTER: t->data[i].f = s->offset + s->amplitude * s->counter; break;
case SIGNAL_TYPE_RANDOM:
s->last[i] += box_muller(0, s->stddev);
t->data[i].f = s->last[i];
break;
}
}
if (s->limit > 0 && s->counter >= s->limit) {
info("Reached limit of node %s", node_name(n));
killme(SIGTERM);
pause();
}
s->counter += steps;
return 1;
}
char * signal_print(struct node *n)
{
struct signal *s = n->_vd;
char *type, *buf = NULL;
switch (s->type) {
case SIGNAL_TYPE_MIXED: type = "mixed"; break;
case SIGNAL_TYPE_RAMP: type = "ramp"; break;
case SIGNAL_TYPE_COUNTER: type = "counter"; break;
case SIGNAL_TYPE_TRIANGLE: type = "triangle"; break;
case SIGNAL_TYPE_SQUARE: type = "square"; break;
case SIGNAL_TYPE_SINE: type = "sine"; break;
case SIGNAL_TYPE_RANDOM: type = "random"; break;
case SIGNAL_TYPE_CONSTANT: type = "constant"; break;
default: return NULL;
}
strcatf(&buf, "signal=%s, rt=%s, rate=%.2f, values=%d, frequency=%.2f, amplitude=%.2f, stddev=%.2f, offset=%.2f",
type, s->rt ? "yes" : "no", s->rate, s->values, s->frequency, s->amplitude, s->stddev, s->offset);
if (s->limit > 0)
strcatf(&buf, ", limit=%d", s->limit);
return buf;
}
int signal_fd(struct node *n)
{
struct signal *s = n->_vd;
return task_fd(&s->task);
}
static struct plugin p = {
.name = "signal",
.description = "Signal generation",
.type = PLUGIN_TYPE_NODE,
.node = {
.vectorize = 1,
.size = sizeof(struct signal),
.parse = signal_parse,
.parse_cli = signal_parse_cli,
.print = signal_print,
.start = signal_open,
.stop = signal_close,
.read = signal_read,
.fd = signal_fd
}
};
REGISTER_PLUGIN(&p)
LIST_INIT_STATIC(&p.node.instances)