embeddedsw/XilinxProcessorIPLib/drivers/emacps/examples/xemacps_example_intr_dma.c

1220 lines
34 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright (C) 2010 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/****************************************************************************/
/**
*
* @file xemacps_example_intr_dma.c
*
* Implements examples that utilize the EmacPs's interrupt driven DMA
* packet transfer mode to send and receive frames.
*
* These examples demonstrate:
*
* - How to perform simple send and receive.
* - Interrupt
* - Error handling
* - Device reset
*
* Functional guide to example:
*
* - EmacPsDmaSingleFrameIntrExample demonstrates the simplest way to send and
* receive frames in in interrupt driven DMA mode.
*
* - EmacPsErrorHandler() demonstrates how to manage asynchronous errors.
*
* - EmacPsResetDevice() demonstrates how to reset the driver/HW without
* loosing all configuration settings.
*
* NOTE:
* Define PEEP in xemacps_example.h to run the example on a PEEP board.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -------------------------------------------------------
* 1.00a wsy 01/10/10 First release
* 1.00a asa 11/25/11 The cache disable routines are removed. So now both
* I-cache and D-cache are enabled. The array RxBuffer is
* removed to avoid an extra copy from RxBuffer to RxFrame.
* Now the address of RxFrame is submitted to the Rx BD
* instead of the address of RxBuffer.
* In function EmacPsDmaSingleFrameIntrExample, BdRxPtr
* is made as a pointer instead of array of pointers. This
* is done since on the Rx path we now submit a single BD
* instead of all 32 BDs. Because of this change, relevant
* changes are made throughout the function
* EmacPsDmaSingleFrameIntrExample.
* Cache invalidation is now being done for the RxFrame
* buffer.
* The unnecessary cache flush (Xil_DCacheFlushRange) is
* removed. This was being done towards the end of the
* example which was unnecessary.
* 1.00a asa 01/24/12 Support for Zynq board is added. The SLCR divisors are
* different for Zynq. Changes are made for the same.
* Presently the SLCR GEM clock divisors are hard-coded
* assuming that IO PLL output frequency is 1000 MHz.
* The BDs are allocated at the address 0xFF00000 and the
* 1 MB address range starting from this address is made
* uncached. This is because, for GEM the BDs need to be
* placed in uncached memory. The RX BDs are allocated at
* address 0xFF00000 and TX BDs are allocated at address
* 0xFF10000.
* The MDIO divisor used of 224 is used for Zynq board.
* 1.01a asa 02/27/12 The hardcoded SLCR divisors for Zynq are removed. The
* divisors are obtained from xparameters.h.c. The sleep
* values are reduced for Zynq. One sleep is added after
* MDIO divisor is set. Some of the prints are removed.
* 1.01a asa 03/14/12 The SLCR divisor support for ENET1 is added.
* 1.01a asa 04/15/12 The funcation calls to Xil_DisableMMU and Xil_EnableMMU
* are removed for setting the translation table
* attributes for the BD memory region.
* 1.05a asa 09/22/13 Cache handling is changed to fix an issue (CR#663885).
* The cache invalidation of the Rx frame is now moved to
* XEmacPsRecvHandler so that invalidation happens after the
* received data is available in the memory. The variable
* TxFrameLength is now made global.
* 2.1 srt 07/11/14 Implemented 64-bit changes and modified as per
* Zynq Ultrascale Mp GEM specification
*
* </pre>
*
*****************************************************************************/
/***************************** Include Files ********************************/
#include "xemacps_example.h"
#include "xil_exception.h"
#include "xil_mmu.h"
/*************************** Constant Definitions ***************************/
/*
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are defined here such that a user can easily
* change all the needed parameters in one place.
*/
#define EMACPS_DEVICE_ID XPAR_XEMACPS_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#define EMACPS_IRPT_INTR XPS_GEM0_INT_ID
#define RXBD_CNT 32 /* Number of RxBDs to use */
#define TXBD_CNT 32 /* Number of TxBDs to use */
/*
* SLCR setting
*/
#define SLCR_LOCK_ADDR (XPS_SYS_CTRL_BASEADDR + 0x4)
#define SLCR_UNLOCK_ADDR (XPS_SYS_CTRL_BASEADDR + 0x8)
#define SLCR_GEM0_CLK_CTRL_ADDR (XPS_SYS_CTRL_BASEADDR + 0x140)
#define SLCR_GEM1_CLK_CTRL_ADDR (XPS_SYS_CTRL_BASEADDR + 0x144)
#ifdef PEEP /* Define PEEP in xemacps_example.h if the example is run on PEEP */
#define SLCR_GEM_10M_CLK_CTRL_VALUE 0x00103031
#define SLCR_GEM_100M_CLK_CTRL_VALUE 0x00103001
#define SLCR_GEM_1G_CLK_CTRL_VALUE 0x00103011
#endif
#define SLCR_LOCK_KEY_VALUE 0x767B
#define SLCR_UNLOCK_KEY_VALUE 0xDF0D
#define SLCR_ADDR_GEM_RST_CTRL (XPS_SYS_CTRL_BASEADDR + 0x214)
/* FIXME: These are constants to enable GEM0 */
#define GPIO_DATA2_REG 0xFF008048
#define GPIO_DATA2_DIR 0xFF008284
#define GPIO_GEM_MASK (3<<18)
#define GPIO_GEM_VAL_1G (1<<18)
/*************************** Variable Definitions ***************************/
EthernetFrame TxFrame; /* Transmit buffer */
EthernetFrame RxFrame; /* Receive buffer */
/*
* Buffer descriptors are allocated in uncached memory. The memory is made
* uncached by setting the attributes appropriately in the MMU table.
*/
/* FIXME: This example is tested without caches */
#define RXBD_SPACE_BYTES XEmacPs_BdRingMemCalc(XEMACPS_BD_ALIGNMENT, RXBD_CNT)
#define TXBD_SPACE_BYTES XEmacPs_BdRingMemCalc(XEMACPS_BD_ALIGNMENT, TXBD_CNT)
/*
* Buffer descriptors are allocated in uncached memory. The memory is made
* uncached by setting the attributes appropriately in the MMU table.
*/
#define RX_BD_LIST_START_ADDRESS 0x0FF00000
#define TX_BD_LIST_START_ADDRESS 0x0FF10000
#define FIRST_FRAGMENT_SIZE 64
/*
* Counters to be incremented by callbacks
*/
volatile s32 FramesRx; /* Frames have been received */
volatile s32 FramesTx; /* Frames have been sent */
volatile s32 DeviceErrors; /* Number of errors detected in the device */
u32 TxFrameLength;
#ifndef TESTAPP_GEN
static XScuGic IntcInstance;
#endif
u32 GemVersion;
/*************************** Function Prototypes ****************************/
/*
* Example
*/
LONG EmacPsDmaIntrExample(XScuGic *IntcInstancePtr,
XEmacPs *EmacPsInstancePtr,
u16 EmacPsDeviceId, u16 EmacPsIntrId);
LONG EmacPsDmaSingleFrameIntrExample(XEmacPs * EmacPsInstancePtr);
/*
* Interrupt setup and Callbacks for examples
*/
static LONG EmacPsSetupIntrSystem(XScuGic * IntcInstancePtr,
XEmacPs * EmacPsInstancePtr,
u16 EmacPsIntrId);
static void EmacPsDisableIntrSystem(XScuGic * IntcInstancePtr,
u16 EmacPsIntrId);
static void XEmacPsSendHandler(void *Callback);
static void XEmacPsRecvHandler(void *Callback);
static void XEmacPsErrorHandler(void *Callback, u8 direction, u32 word);
/*
* Utility routines
*/
static LONG EmacPsResetDevice(XEmacPs * EmacPsInstancePtr);
void XEmacPs_SetMdioDivisor(XEmacPs *InstancePtr, XEmacPs_MdcDiv Divisor);
/****************************************************************************/
/**
*
* This is the main function for the EmacPs example. This function is not
* included if the example is generated from the TestAppGen test tool.
*
* @param None.
*
* @return XST_SUCCESS to indicate success, otherwise XST_FAILURE.
*
* @note None.
*
****************************************************************************/
#ifndef TESTAPP_GEN
int main(void)
{
LONG Status;
xil_printf("Entering into main() \r\n");
/*
* Call the EmacPs DMA interrupt example , specify the parameters
* generated in xparameters.h
*/
Status = EmacPsDmaIntrExample(&IntcInstance,
&EmacPsInstance,
EMACPS_DEVICE_ID,
EMACPS_IRPT_INTR);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Failure in examples");
return XST_FAILURE;
}
xil_printf("Success in examples\r\n");
return XST_SUCCESS;
}
#endif
/****************************************************************************/
/**
*
* This function demonstrates the usage of the EmacPs driver by sending by
* sending and receiving frames in interrupt driven DMA mode.
*
*
* @param IntcInstancePtr is a pointer to the instance of the Intc driver.
* @param EmacPsInstancePtr is a pointer to the instance of the EmacPs
* driver.
* @param EmacPsDeviceId is Device ID of the EmacPs Device , typically
* XPAR_<EMACPS_instance>_DEVICE_ID value from xparameters.h.
* @param EmacPsIntrId is the Interrupt ID and is typically
* XPAR_<EMACPS_instance>_INTR value from xparameters.h.
*
* @return XST_SUCCESS to indicate success, otherwise XST_FAILURE.
*
* @note None.
*
*****************************************************************************/
LONG EmacPsDmaIntrExample(XScuGic * IntcInstancePtr,
XEmacPs * EmacPsInstancePtr,
u16 EmacPsDeviceId,
u16 EmacPsIntrId)
{
LONG Status;
XEmacPs_Config *Config;
XEmacPs_Bd BdTemplate;
#ifndef PEEP
u32 SlcrTxClkCntrl;
#endif
/*************************************/
/* Setup device for first-time usage */
/*************************************/
/*
* Initialize instance. Should be configured for DMA
* This example calls _CfgInitialize instead of _Initialize due to
* retiring _Initialize. So in _CfgInitialize we use
* XPAR_(IP)_BASEADDRESS to make sure it is not virtual address.
*/
Config = XEmacPs_LookupConfig(EmacPsDeviceId);
Status = XEmacPs_CfgInitialize(EmacPsInstancePtr, Config,
Config->BaseAddress);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error in initialize");
return XST_FAILURE;
}
GemVersion = ((Xil_In32(Config->BaseAddress + 0xFC)) >> 16) & 0xFFF;
if (GemVersion == 2)
{
/*************************************/
/* Setup device for first-time usage */
/*************************************/
/* SLCR unlock */
*(volatile unsigned int *)(SLCR_UNLOCK_ADDR) = SLCR_UNLOCK_KEY_VALUE;
#ifdef PEEP
*(volatile unsigned int *)(SLCR_GEM0_CLK_CTRL_ADDR) =
SLCR_GEM_1G_CLK_CTRL_VALUE;
*(volatile unsigned int *)(SLCR_GEM1_CLK_CTRL_ADDR) =
SLCR_GEM_1G_CLK_CTRL_VALUE;
#else
if (EmacPsIntrId == XPS_GEM0_INT_ID) {
#ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0
/* GEM0 1G clock configuration*/
SlcrTxClkCntrl =
*(volatile unsigned int *)(SLCR_GEM0_CLK_CTRL_ADDR);
SlcrTxClkCntrl &= EMACPS_SLCR_DIV_MASK;
SlcrTxClkCntrl |= (XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV1 << 20);
SlcrTxClkCntrl |= (XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0 << 8);
*(volatile unsigned int *)(SLCR_GEM0_CLK_CTRL_ADDR) =
SlcrTxClkCntrl;
#endif
} else if (EmacPsIntrId == XPS_GEM1_INT_ID) {
#ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV1
/* GEM1 1G clock configuration*/
SlcrTxClkCntrl =
*(volatile unsigned int *)(SLCR_GEM1_CLK_CTRL_ADDR);
SlcrTxClkCntrl &= EMACPS_SLCR_DIV_MASK;
SlcrTxClkCntrl |= (XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV1 << 20);
SlcrTxClkCntrl |= (XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0 << 8);
*(volatile unsigned int *)(SLCR_GEM1_CLK_CTRL_ADDR) =
SlcrTxClkCntrl;
#endif
}
#endif
/* SLCR lock */
*(unsigned int *)(SLCR_LOCK_ADDR) = SLCR_LOCK_KEY_VALUE;
sleep(1);
}
/*
* Set the MAC address
*/
Status = XEmacPs_SetMacAddress(EmacPsInstancePtr, EmacPsMAC, 1);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error setting MAC address");
return XST_FAILURE;
}
/*
* Setup callbacks
*/
Status = XEmacPs_SetHandler(EmacPsInstancePtr,
XEMACPS_HANDLER_DMASEND,
(void *) XEmacPsSendHandler,
EmacPsInstancePtr);
Status |=
XEmacPs_SetHandler(EmacPsInstancePtr,
XEMACPS_HANDLER_DMARECV,
(void *) XEmacPsRecvHandler,
EmacPsInstancePtr);
Status |=
XEmacPs_SetHandler(EmacPsInstancePtr, XEMACPS_HANDLER_ERROR,
(void *) XEmacPsErrorHandler,
EmacPsInstancePtr);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error assigning handlers");
return XST_FAILURE;
}
/*
* Setup RxBD space.
*
* We have already defined a properly aligned area of memory to store
* RxBDs at the beginning of this source code file so just pass its
* address into the function. No MMU is being used so the physical
* and virtual addresses are the same.
*
* Setup a BD template for the Rx channel. This template will be
* copied to every RxBD. We will not have to explicitly set these
* again.
*/
XEmacPs_BdClear(&BdTemplate);
/*
* Create the RxBD ring
*/
Status = XEmacPs_BdRingCreate(&(XEmacPs_GetRxRing
(EmacPsInstancePtr)),
(UINTPTR) RX_BD_LIST_START_ADDRESS,
(UINTPTR)RX_BD_LIST_START_ADDRESS,
XEMACPS_BD_ALIGNMENT,
RXBD_CNT);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up RxBD space, BdRingCreate");
return XST_FAILURE;
}
Status = XEmacPs_BdRingClone(&(XEmacPs_GetRxRing(EmacPsInstancePtr)),
&BdTemplate, XEMACPS_RECV);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up RxBD space, BdRingClone");
return XST_FAILURE;
}
if (GemVersion == 2)
{
/*
* The BDs need to be allocated in uncached memory. Hence the 1 MB
* address range that starts at address 0xFF00000 is made uncached.
*/
Xil_SetTlbAttributes(0x0FF00000, 0xc02);
}
/*
* Setup TxBD space.
*
* Like RxBD space, we have already defined a properly aligned area
* of memory to use.
*
* Also like the RxBD space, we create a template. Notice we don't
* set the "last" attribute. The example will be overriding this
* attribute so it does no good to set it up here.
*/
XEmacPs_BdClear(&BdTemplate);
XEmacPs_BdSetStatus(&BdTemplate, XEMACPS_TXBUF_USED_MASK);
/*
* Create the TxBD ring
*/
Status = XEmacPs_BdRingCreate(&(XEmacPs_GetTxRing
(EmacPsInstancePtr)),
(UINTPTR) TX_BD_LIST_START_ADDRESS,
(UINTPTR) TX_BD_LIST_START_ADDRESS,
XEMACPS_BD_ALIGNMENT,
TXBD_CNT);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up TxBD space, BdRingCreate");
return XST_FAILURE;
}
Status = XEmacPs_BdRingClone(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
&BdTemplate, XEMACPS_SEND);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up TxBD space, BdRingClone");
return XST_FAILURE;
}
/*
* Set emacps to phy loopback
*/
if (GemVersion == 2)
{
#ifndef PEEP /* For Zynq board */
XEmacPs_SetMdioDivisor(EmacPsInstancePtr, MDC_DIV_224);
sleep(1);
#endif
}
/*
* Set emacps to phy loopback
*/
EmacPsUtilEnterLoopback(EmacPsInstancePtr, EMACPS_LOOPBACK_SPEED_1G);
XEmacPs_SetOperatingSpeed(EmacPsInstancePtr, EMACPS_LOOPBACK_SPEED_1G);
/*
* Setup the interrupt controller and enable interrupts
*/
Status = EmacPsSetupIntrSystem(IntcInstancePtr,
EmacPsInstancePtr, EmacPsIntrId);
/*
* Run the EmacPs DMA Single Frame Interrupt example
*/
Status = EmacPsDmaSingleFrameIntrExample(EmacPsInstancePtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Disable the interrupts for the EmacPs device
*/
EmacPsDisableIntrSystem(IntcInstancePtr, EmacPsIntrId);
/*
* Stop the device
*/
XEmacPs_Stop(EmacPsInstancePtr);
return XST_SUCCESS;
}
/****************************************************************************/
/**
*
* This function demonstrates the usage of the EMACPS by sending and
* receiving a single frame in DMA interrupt mode.
* The source packet will be described by two descriptors. It will be
* received into a buffer described by a single descriptor.
*
* @param EmacPsInstancePtr is a pointer to the instance of the EmacPs
* driver.
*
* @return XST_SUCCESS to indicate success, otherwise XST_FAILURE.
*
* @note None.
*
*****************************************************************************/
LONG EmacPsDmaSingleFrameIntrExample(XEmacPs *EmacPsInstancePtr)
{
LONG Status;
u32 PayloadSize = 1000;
u32 NumRxBuf = 0;
XEmacPs_Bd *Bd1Ptr;
XEmacPs_Bd *Bd2Ptr;
XEmacPs_Bd *BdRxPtr;
/*
* Clear variables shared with callbacks
*/
FramesRx = 0;
FramesTx = 0;
DeviceErrors = 0;
/*
* Calculate the frame length (not including FCS)
*/
TxFrameLength = XEMACPS_HDR_SIZE + PayloadSize;
/*
* Setup packet to be transmitted
*/
EmacPsUtilFrameHdrFormatMAC(&TxFrame, EmacPsMAC);
EmacPsUtilFrameHdrFormatType(&TxFrame, PayloadSize);
EmacPsUtilFrameSetPayloadData(&TxFrame, PayloadSize);
Xil_DCacheFlushRange((UINTPTR)&TxFrame, sizeof(EthernetFrame));
/*
* Clear out receive packet memory area
*/
EmacPsUtilFrameMemClear(&RxFrame);
Xil_DCacheFlushRange((UINTPTR)&RxFrame, sizeof(EthernetFrame));
/*
* Allocate RxBDs since we do not know how many BDs will be used
* in advance, use RXBD_CNT here.
*/
if (GemVersion == 2)
{
Status = XEmacPs_BdRingAlloc(&
(XEmacPs_GetRxRing(EmacPsInstancePtr)),
2, &BdRxPtr);
}
if (GemVersion > 2)
{
Status = XEmacPs_BdRingAlloc(&
(XEmacPs_GetRxRing(EmacPsInstancePtr)),
1, &BdRxPtr);
}
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error allocating RxBD");
return XST_FAILURE;
}
/*
* Setup the BD. The XEmacPs_BdRingClone() call will mark the
* "wrap" field for last RxBD. Setup buffer address to associated
* BD.
*/
XEmacPs_BdSetAddressRx(BdRxPtr, (UINTPTR)&RxFrame);
/*
* Enqueue to HW
*/
if (GemVersion == 2)
{
Status = XEmacPs_BdRingToHw(&(XEmacPs_GetRxRing(EmacPsInstancePtr)),
2, BdRxPtr);
}
if (GemVersion > 2)
{
Status = XEmacPs_BdRingToHw(&(XEmacPs_GetRxRing(EmacPsInstancePtr)),
1, BdRxPtr);
}
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error committing RxBD to HW");
return XST_FAILURE;
}
/*
* Though the max BD size is 16 bytes for extended desc mode, performing
* cache flush for 64 bytes. which is equal to the cache line size.
*/
if (GemVersion > 2)
{
Xil_DCacheFlushRange((UINTPTR)BdRxPtr, 64);
}
/*
* Allocate, setup, and enqueue 2 TxBDs. The first BD will
* describe the first 32 bytes of TxFrame and the rest of BDs
* will describe the rest of the frame.
*
* The function below will allocate 2 adjacent BDs with Bd1Ptr
* being set as the lead BD.
*/
if (GemVersion == 2)
{
Status = XEmacPs_BdRingAlloc(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
2, &Bd1Ptr);
}
if (GemVersion > 2)
{
Status = XEmacPs_BdRingAlloc(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
1, &Bd1Ptr);
}
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error allocating TxBD");
return XST_FAILURE;
}
/*
* Setup first TxBD
*/
XEmacPs_BdSetAddressTx(Bd1Ptr, (UINTPTR)&TxFrame);
XEmacPs_BdSetLength(Bd1Ptr, TxFrameLength);
XEmacPs_BdClearTxUsed(Bd1Ptr);
XEmacPs_BdSetLast(Bd1Ptr);
/*
* Setup second TxBD
*/
Bd2Ptr = XEmacPs_BdRingNext(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
Bd1Ptr);
XEmacPs_BdSetAddressTx(Bd2Ptr,
(UINTPTR) (&TxFrame) + FIRST_FRAGMENT_SIZE);
XEmacPs_BdSetLength(Bd2Ptr, TxFrameLength - FIRST_FRAGMENT_SIZE);
XEmacPs_BdClearTxUsed(Bd2Ptr);
XEmacPs_BdSetLast(Bd2Ptr);
/*
* Enqueue to HW
*/
if (GemVersion == 2)
{
Status = XEmacPs_BdRingToHw(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
2, Bd1Ptr);
}
if (GemVersion > 2)
{
Status = XEmacPs_BdRingToHw(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
1, Bd1Ptr);
}
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error committing TxBD to HW");
return XST_FAILURE;
}
Xil_DCacheFlushRange((UINTPTR)Bd1Ptr, 64);
/*
* Set the Queue pointers
*/
XEmacPs_SetQueuePtr(EmacPsInstancePtr, EmacPsInstancePtr->RxBdRing.BaseBdAddr, 0, XEMACPS_RECV);
if (GemVersion > 2) {
XEmacPs_SetQueuePtr(EmacPsInstancePtr, EmacPsInstancePtr->TxBdRing.BaseBdAddr, 1, XEMACPS_SEND);
}else {
XEmacPs_SetQueuePtr(EmacPsInstancePtr, EmacPsInstancePtr->TxBdRing.BaseBdAddr, 0, XEMACPS_SEND);
}
/*
* Start the device
*/
XEmacPs_Start(EmacPsInstancePtr);
/* Start transmit */
XEmacPs_Transmit(EmacPsInstancePtr);
/*
* Wait for transmission to complete
*/
while (!FramesTx);
/*
* Now that the frame has been sent, post process our TxBDs.
* Since we have only submitted 2 to hardware, then there should
* be only 2 ready for post processing.
*/
if (GemVersion == 2)
{
if (XEmacPs_BdRingFromHwTx(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
2, &Bd1Ptr) == 0) {
EmacPsUtilErrorTrap
("TxBDs were not ready for post processing");
return XST_FAILURE;
}
}
if (GemVersion > 2)
{
if (XEmacPs_BdRingFromHwTx(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
1, &Bd1Ptr) == 0) {
EmacPsUtilErrorTrap
("TxBDs were not ready for post processing");
return XST_FAILURE;
}
}
/*
* Examine the TxBDs.
*
* There isn't much to do. The only thing to check would be DMA
* exception bits. But this would also be caught in the error
* handler. So we just return these BDs to the free list.
*/
Status = XEmacPs_BdRingFree(&(XEmacPs_GetTxRing(EmacPsInstancePtr)),
1, Bd1Ptr);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error freeing up TxBDs");
return XST_FAILURE;
}
/*
* Wait for Rx indication
*/
while (!FramesRx);
/*
* Now that the frame has been received, post process our RxBD.
* Since we have submitted to hardware, then there should be only 1
* ready for post processing.
*/
NumRxBuf = XEmacPs_BdRingFromHwRx(&(XEmacPs_GetRxRing
(EmacPsInstancePtr)), 1,
&BdRxPtr);
if (0 == NumRxBuf) {
EmacPsUtilErrorTrap("RxBD was not ready for post processing");
return XST_FAILURE;
}
/*
* There is no device status to check. If there was a DMA error,
* it should have been reported to the error handler. Check the
* receive lengthi against the transmitted length, then verify
* the data.
*/
if ((XEmacPs_BdGetLength(BdRxPtr)) != TxFrameLength) {
EmacPsUtilErrorTrap("Length mismatch");
return XST_FAILURE;
}
if (EmacPsUtilFrameVerify(&TxFrame, &RxFrame) != 0) {
EmacPsUtilErrorTrap("Data mismatch");
return XST_FAILURE;
}
/*
* Return the RxBD back to the channel for later allocation. Free
* the exact number we just post processed.
*/
Status = XEmacPs_BdRingFree(&(XEmacPs_GetRxRing(EmacPsInstancePtr)),
NumRxBuf, BdRxPtr);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error freeing up RxBDs");
return XST_FAILURE;
}
/*
* Finished this example. If everything worked correctly, all TxBDs
* and RxBDs should be free for allocation. Stop the device.
*/
XEmacPs_Stop(EmacPsInstancePtr);
return XST_SUCCESS;
}
/****************************************************************************/
/**
* This function resets the device but preserves the options set by the user.
*
* The descriptor list could be reinitialized with the same calls to
* XEmacPs_BdRingClone() as used in main(). Doing this is a matter of
* preference.
* In many cases, an OS may have resources tied up in the descriptors.
* Reinitializing in this case may bad for the OS since its resources may be
* permamently lost.
*
* @param EmacPsInstancePtr is a pointer to the instance of the EmacPs
* driver.
*
* @return XST_SUCCESS if successful, else XST_FAILURE.
*
* @note None.
*
*****************************************************************************/
static LONG EmacPsResetDevice(XEmacPs * EmacPsInstancePtr)
{
LONG Status = 0;
u8 MacSave[6];
u32 Options;
XEmacPs_Bd BdTemplate;
/*
* Stop device
*/
XEmacPs_Stop(EmacPsInstancePtr);
/*
* Save the device state
*/
XEmacPs_GetMacAddress(EmacPsInstancePtr, &MacSave, 1);
Options = XEmacPs_GetOptions(EmacPsInstancePtr);
/*
* Stop and reset the device
*/
XEmacPs_Reset(EmacPsInstancePtr);
/*
* Restore the state
*/
XEmacPs_SetMacAddress(EmacPsInstancePtr, &MacSave, 1);
Status |= XEmacPs_SetOptions(EmacPsInstancePtr, Options);
Status |= XEmacPs_ClearOptions(EmacPsInstancePtr, ~Options);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error restoring state after reset");
return XST_FAILURE;
}
/*
* Setup callbacks
*/
Status = XEmacPs_SetHandler(EmacPsInstancePtr,
XEMACPS_HANDLER_DMASEND,
(void *) XEmacPsSendHandler,
EmacPsInstancePtr);
Status |= XEmacPs_SetHandler(EmacPsInstancePtr,
XEMACPS_HANDLER_DMARECV,
(void *) XEmacPsRecvHandler,
EmacPsInstancePtr);
Status |= XEmacPs_SetHandler(EmacPsInstancePtr, XEMACPS_HANDLER_ERROR,
(void *) XEmacPsErrorHandler,
EmacPsInstancePtr);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap("Error assigning handlers");
return XST_FAILURE;
}
/*
* Setup RxBD space.
*
* We have already defined a properly aligned area of memory to store
* RxBDs at the beginning of this source code file so just pass its
* address into the function. No MMU is being used so the physical and
* virtual addresses are the same.
*
* Setup a BD template for the Rx channel. This template will be copied
* to every RxBD. We will not have to explicitly set these again.
*/
XEmacPs_BdClear(&BdTemplate);
/*
* Create the RxBD ring
*/
Status = XEmacPs_BdRingCreate(&(XEmacPs_GetRxRing
(EmacPsInstancePtr)),
(UINTPTR) RX_BD_LIST_START_ADDRESS,
(UINTPTR) RX_BD_LIST_START_ADDRESS,
XEMACPS_BD_ALIGNMENT,
RXBD_CNT);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up RxBD space, BdRingCreate");
return XST_FAILURE;
}
Status = XEmacPs_BdRingClone(&
(XEmacPs_GetRxRing(EmacPsInstancePtr)),
&BdTemplate, XEMACPS_RECV);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up RxBD space, BdRingClone");
return XST_FAILURE;
}
/*
* Setup TxBD space.
*
* Like RxBD space, we have already defined a properly aligned area of
* memory to use.
*
* Also like the RxBD space, we create a template. Notice we don't set
* the "last" attribute. The examples will be overriding this
* attribute so it does no good to set it up here.
*/
XEmacPs_BdClear(&BdTemplate);
XEmacPs_BdSetStatus(&BdTemplate, XEMACPS_TXBUF_USED_MASK);
/*
* Create the TxBD ring
*/
Status = XEmacPs_BdRingCreate(&(XEmacPs_GetTxRing
(EmacPsInstancePtr)),
(UINTPTR) TX_BD_LIST_START_ADDRESS,
(UINTPTR) TX_BD_LIST_START_ADDRESS,
XEMACPS_BD_ALIGNMENT,
TXBD_CNT);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up TxBD space, BdRingCreate");
return XST_FAILURE;
}
Status = XEmacPs_BdRingClone(&
(XEmacPs_GetTxRing(EmacPsInstancePtr)),
&BdTemplate, XEMACPS_SEND);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Error setting up TxBD space, BdRingClone");
return XST_FAILURE;
}
/*
* Restart the device
*/
XEmacPs_Start(EmacPsInstancePtr);
return XST_SUCCESS;
}
/****************************************************************************/
/**
*
* This function setups the interrupt system so interrupts can occur for the
* EMACPS.
* @param IntcInstancePtr is a pointer to the instance of the Intc driver.
* @param EmacPsInstancePtr is a pointer to the instance of the EmacPs
* driver.
* @param EmacPsIntrId is the Interrupt ID and is typically
* XPAR_<EMACPS_instance>_INTR value from xparameters.h.
*
* @return XST_SUCCESS if successful, otherwise XST_FAILURE.
*
* @note None.
*
*****************************************************************************/
static LONG EmacPsSetupIntrSystem(XScuGic *IntcInstancePtr,
XEmacPs *EmacPsInstancePtr,
u16 EmacPsIntrId)
{
LONG Status;
#ifndef TESTAPP_GEN
XScuGic_Config *GicConfig;
Xil_ExceptionInit();
/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
GicConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == GicConfig) {
return XST_FAILURE;
}
Status = XScuGic_CfgInitialize(IntcInstancePtr, GicConfig,
GicConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Connect the interrupt controller interrupt handler to the hardware
* interrupt handling logic in the processor.
*/
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IRQ_INT,
(Xil_ExceptionHandler)XScuGic_InterruptHandler,
IntcInstancePtr);
#endif
/*
* Connect a device driver handler that will be called when an
* interrupt for the device occurs, the device driver handler performs
* the specific interrupt processing for the device.
*/
Status = XScuGic_Connect(IntcInstancePtr, EmacPsIntrId,
(Xil_InterruptHandler) XEmacPs_IntrHandler,
(void *) EmacPsInstancePtr);
if (Status != XST_SUCCESS) {
EmacPsUtilErrorTrap
("Unable to connect ISR to interrupt controller");
return XST_FAILURE;
}
/*
* Enable interrupts from the hardware
*/
XScuGic_Enable(IntcInstancePtr, EmacPsIntrId);
#ifndef TESTAPP_GEN
/*
* Enable interrupts in the processor
*/
Xil_ExceptionEnable();
#endif
return XST_SUCCESS;
}
/****************************************************************************/
/**
*
* This function disables the interrupts that occur for EmacPs.
*
* @param IntcInstancePtr is the pointer to the instance of the ScuGic
* driver.
* @param EmacPsIntrId is interrupt ID and is typically
* XPAR_<EMACPS_instance>_INTR value from xparameters.h.
*
* @return None.
*
* @note None.
*
*****************************************************************************/
static void EmacPsDisableIntrSystem(XScuGic * IntcInstancePtr,
u16 EmacPsIntrId)
{
/*
* Disconnect and disable the interrupt for the EmacPs device
*/
XScuGic_Disconnect(IntcInstancePtr, EmacPsIntrId);
}
/****************************************************************************/
/**
*
* This the Transmit handler callback function and will increment a shared
* counter that can be shared by the main thread of operation.
*
* @param Callback is the pointer to the instance of the EmacPs device.
*
* @return None.
*
* @note None.
*
*****************************************************************************/
static void XEmacPsSendHandler(void *Callback)
{
XEmacPs *EmacPsInstancePtr = (XEmacPs *) Callback;
/*
* Disable the transmit related interrupts
*/
XEmacPs_IntDisable(EmacPsInstancePtr, (XEMACPS_IXR_TXCOMPL_MASK |
XEMACPS_IXR_TX_ERR_MASK));
if (GemVersion > 2) {
XEmacPs_IntQ1Disable(EmacPsInstancePtr, XEMACPS_INTQ1_IXR_ALL_MASK);
}
/*
* Increment the counter so that main thread knows something
* happened.
*/
FramesTx++;
}
/****************************************************************************/
/**
*
* This is the Receive handler callback function and will increment a shared
* counter that can be shared by the main thread of operation.
*
* @param Callback is a pointer to the instance of the EmacPs device.
*
* @return None.
*
* @note None.
*
*****************************************************************************/
static void XEmacPsRecvHandler(void *Callback)
{
XEmacPs *EmacPsInstancePtr = (XEmacPs *) Callback;
/*
* Disable the transmit related interrupts
*/
XEmacPs_IntDisable(EmacPsInstancePtr, (XEMACPS_IXR_FRAMERX_MASK |
XEMACPS_IXR_RX_ERR_MASK));
/*
* Increment the counter so that main thread knows something
* happened.
*/
FramesRx++;
Xil_DCacheInvalidateRange((UINTPTR)&RxFrame, sizeof(EthernetFrame));
if (GemVersion > 2) {
Xil_DCacheInvalidateRange((UINTPTR)RX_BD_LIST_START_ADDRESS, 64);
}
}
/****************************************************************************/
/**
*
* This is the Error handler callback function and this function increments
* the error counter so that the main thread knows the number of errors.
*
* @param Callback is the callback function for the driver. This
* parameter is not used in this example.
* @param Direction is passed in from the driver specifying which
* direction error has occurred.
* @param ErrorWord is the status register value passed in.
*
* @return None.
*
* @note None.
*
*****************************************************************************/
static void XEmacPsErrorHandler(void *Callback, u8 Direction, u32 ErrorWord)
{
XEmacPs *EmacPsInstancePtr = (XEmacPs *) Callback;
/*
* Increment the counter so that main thread knows something
* happened. Reset the device and reallocate resources ...
*/
DeviceErrors++;
switch (Direction) {
case XEMACPS_RECV:
if (ErrorWord & XEMACPS_RXSR_HRESPNOK_MASK) {
EmacPsUtilErrorTrap("Receive DMA error");
}
if (ErrorWord & XEMACPS_RXSR_RXOVR_MASK) {
EmacPsUtilErrorTrap("Receive over run");
}
if (ErrorWord & XEMACPS_RXSR_BUFFNA_MASK) {
EmacPsUtilErrorTrap("Receive buffer not available");
}
break;
case XEMACPS_SEND:
if (ErrorWord & XEMACPS_TXSR_HRESPNOK_MASK) {
EmacPsUtilErrorTrap("Transmit DMA error");
}
/* FIXME: Interrupt Q1 Status register has Tx AHB error and
this has to be handled */
if (ErrorWord & XEMACPS_TXSR_URUN_MASK) {
EmacPsUtilErrorTrap("Transmit under run");
}
if (ErrorWord & XEMACPS_TXSR_BUFEXH_MASK) {
EmacPsUtilErrorTrap("Transmit buffer exhausted");
}
if (ErrorWord & XEMACPS_TXSR_RXOVR_MASK) {
EmacPsUtilErrorTrap("Transmit retry excessed limits");
}
if (ErrorWord & XEMACPS_TXSR_FRAMERX_MASK) {
EmacPsUtilErrorTrap("Transmit collision");
}
if (ErrorWord & XEMACPS_TXSR_USEDREAD_MASK) {
EmacPsUtilErrorTrap("Transmit buffer not available");
}
break;
}
/*
* Bypassing the reset functionality as the default tx status for q0 is
* USED BIT READ. so, the first interrupt will be tx used bit and it resets
* the core always.
*/
if (GemVersion == 2) {
EmacPsResetDevice(EmacPsInstancePtr);
}
}