embeddedsw/XilinxProcessorIPLib/drivers/sysmon/examples/xsysmon_intr_printf_example.c

867 lines
26 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright (C) 2007 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/****************************************************************************/
/**
*
* @file xsysmon_intr_printf_example.c
*
* This file contains a design example using the driver functions
* of the System Monitor/ADC driver. This example here shows the usage of the
* driver/device in interrupt mode to handle on-chip temperature and voltage
* alarm interrupts.
*
*
* @note
*
* This code assumes that no Operating System is being used.
*
* The values of the on-chip Temperature, VccInt voltage and VccAux voltage are
* read from the device and then the alarm thresholds are set in such a manner
* that the alarms occur.
*
* This examples also assumes that there is a STDIO device in the system.
* This example has floating point calculations and uses printfs for outputting
* floating point data, therefore the memory allocated for the Stack must be
* more.
*
* <pre>
*
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ----- -------- -----------------------------------------------------
* 1.00a xd/sv 05/22/07 First release
* 2.00a sv 06/22/08 Added printfs and used conversion macros
* 4.00a ktn 10/22/09 Updated the example to use HAL Processor APIs/macros.
* Updated the example to use macros that have been
* renamed to remove _m from the name of the macro.
* 5.01a bss 03/13/12 Updated for Zynq.
* 5.03a bss 04/25/13 Modified SysMonIntrExample function to set
* Sequencer Mode as Safe mode instead of Single
* channel mode before configuring Sequencer registers.
* CR #703729
* </pre>
*
*****************************************************************************/
/***************************** Include Files ********************************/
#include "xsysmon.h"
#include "xparameters.h"
#include "xstatus.h"
#include "stdio.h"
#include "xil_exception.h"
#ifdef XPAR_INTC_0_DEVICE_ID
#include "xintc.h"
#include <stdio.h>
#else
#include "xscugic.h"
#include "xil_printf.h"
#endif
/************************** Constant Definitions ****************************/
/*
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are defined here such that a user can easily
* change all the needed parameters in one place.
*/
#define SYSMON_DEVICE_ID XPAR_SYSMON_0_DEVICE_ID
#ifdef XPAR_INTC_0_DEVICE_ID /* Interrupt Controller */
#define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID
#define INTR_ID XPAR_INTC_0_SYSMON_0_VEC_ID
#else /* SCUGIC Interrupt Controller */
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#define INTR_ID XPAR_FABRIC_SYSMON_0_VEC_ID
#endif /* XPAR_INTC_0_DEVICE_ID */
/*
* The following are the definitions of the Alarm Limits to be programmed to
* the threshold registers. The user needs to change these according to the
* needs of the application.
*/
#define TEST_TEMP_UPPER 85.0f /* Temperature Upper Alarm Limit */
#define TEST_TEMP_LOWER 65.0f /* Temperature Lower Alarm Limit */
#define TEST_VCCINT_UPPER 1.05f /* VccInt Upper Alarm Limit */
#define TEST_VCCINT_LOWER 0.95f /* VccInt Lower Alarm Limit */
#define TEST_VCCAUX_UPPER 2.625f /* VccAux Upper Alarm Limit */
#define TEST_VCCAUX_LOWER 2.375f /* VccAux Lower Alarm Limit */
#define printf xil_printf /* Small foot-print printf function */
#ifdef XPAR_INTC_0_DEVICE_ID /* Interrupt Controller */
#define INTC XIntc
#define INTC_HANDLER XIntc_InterruptHandler
#else /* SCUGIC Interrupt Controller */
#define INTC XScuGic
#define INTC_HANDLER XScuGic_InterruptHandler
#endif /* XPAR_INTC_0_DEVICE_ID */
/**************************** Type Definitions ******************************/
/***************** Macros (Inline Functions) Definitions ********************/
/************************** Function Prototypes *****************************/
static int SysMonIntrExample(INTC* IntcInstPtr,
XSysMon* SysMonInstPtr,
u16 SysMonDeviceId,
u16 SysMonIntrId);
static void SysMonInterruptHandler(void *CallBackRef);
static int SysMonSetupInterruptSystem(INTC* IntcInstPtr,
XSysMon *SysMonPtr,
u16 IntrId );
static int SysMonFractionToInt(float FloatNum);
/************************** Variable Definitions ****************************/
static XSysMon SysMonInst; /* System Monitor driver instance */
static INTC IntcInst; /* Instance of the XIntc driver */
/*
* Shared variables used to test the callbacks.
*/
volatile static int TempIntrActive = FALSE; /* Temperature alarm intr active */
volatile static int VccIntIntr = FALSE; /* VCCINT alarm interrupt */
volatile static int VccAuxIntr = FALSE; /* VCCAUX alarm interrupt */
/****************************************************************************/
/**
*
* Main function that invokes the Interrupt example.
*
* @param None.
*
* @return
* - XST_SUCCESS if the example has completed successfully.
* - XST_FAILURE if the example has failed.
*
* @note None.
*
*****************************************************************************/
int main(void)
{
int Status;
/*
* Run the SysMonitor interrupt example, specify the parameters that
* are generated in xparameters.h.
*/
Status = SysMonIntrExample(&IntcInst, &SysMonInst, SYSMON_DEVICE_ID,
INTR_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
return XST_SUCCESS;
}
/****************************************************************************/
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
*
* The function does the following tasks:
* - Initiate the System Monitor/ADC device driver instance
* - Run self-test on the device
* - Reset the device
* - Set up alarms for on-chip temperature, VCCINT and VCCAUX
* - Set up sequence registers to continuously monitor on-chip
* temperature, VCCINT and VCCAUX
* - Setup interrupt system
* - Enable interrupts
* - Set up configuration registers to start the sequence
* - Wait until temperature alarm interrupt or VCCINT alarm interrupt
* or VCCAUX alarm interrupt occurs
*
* @param IntcInstPtr is a pointer to the Interrupt Controller
* driver Instance.
* @param SysMonInstPtr is a pointer to the XSysMon driver Instance.
* @param SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID
* value from xparameters.h.
* @param SysMonIntrId is
* XPAR_<INTC_instance>_<SYSMON_ADC_instance>_VEC_ID value from
* xparameters.h.
*
* @return
* - XST_SUCCESS if the example has completed successfully.
* - XST_FAILURE if the example has failed.
*
* @note This function may never return if no interrupt occurs.
*
****************************************************************************/
static int SysMonIntrExample(INTC* IntcInstPtr, XSysMon* SysMonInstPtr,
u16 SysMonDeviceId, u16 SysMonIntrId)
{
int Status;
XSysMon_Config *ConfigPtr;
u32 Data;
u32 TempRawData;
u32 VccAuxRawData;
u32 VccIntRawData;
float TempData;
float VccAuxData;
float VccIntData;
float MaxData;
float MinData;
u32 IntrStatus;
printf("\r\nEntering the SysMon Interrupt Example. \r\n");
/*
* Initialize the SysMon driver.
*/
ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
if (ConfigPtr == NULL) {
return XST_FAILURE;
}
XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr, ConfigPtr->BaseAddress);
/*
* Self Test the System Monitor/ADC device.
*/
Status = XSysMon_SelfTest(SysMonInstPtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Disable the Channel Sequencer before configuring the Sequence
* registers.
*/
XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SAFE);
/*
* Setup the Averaging to be done for the channels in the
* Configuration 0 register as 16 samples:
*/
XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);
/*
* Setup the Sequence register for 1st Auxiliary channel
* Setting is:
* - Add acquisition time by 6 ADCCLK cycles.
* - Bipolar Mode
*
* Setup the Sequence register for 16th Auxiliary channel
* Setting is:
* - Add acquisition time by 6 ADCCLK cycles.
* - Unipolar Mode
*/
Status = XSysMon_SetSeqInputMode(SysMonInstPtr, XSM_SEQ_CH_AUX00);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
Status = XSysMon_SetSeqAcqTime(SysMonInstPtr, XSM_SEQ_CH_AUX15 |
XSM_SEQ_CH_AUX00);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Enable the averaging on the following channels in the Sequencer
* registers:
* - On-chip Temperature
* - On-chip VCCINT supply sensor
* - On-chip VCCAUX supply sensor
* - 1st Auxiliary Channel
* - 16th Auxiliary Channel
* - Calibration Channel
*/
Status = XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
XSM_SEQ_CH_VCCINT |
XSM_SEQ_CH_VCCAUX |
XSM_SEQ_CH_AUX00 |
XSM_SEQ_CH_AUX15 |
XSM_SEQ_CH_CALIB);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Enable the following channels in the Sequencer registers:
* - On-chip Temperature
* - On-chip VCCINT supply sensor
* - On-chip VCCAUX supply sensor
* - 1st Auxiliary Channel
* - 16th Auxiliary Channel
* - Calibration Channel
*/
Status = XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
XSM_SEQ_CH_VCCINT |
XSM_SEQ_CH_VCCAUX |
XSM_SEQ_CH_AUX00 |
XSM_SEQ_CH_AUX15 |
XSM_SEQ_CH_CALIB);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Set the ADCCLK frequency equal to 1/32 of System clock for the System
* Monitor/ADC in the Configuration Register 2.
*/
XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);
/*
* Set the Calibration enables.
*/
XSysMon_SetCalibEnables(SysMonInstPtr,
XSM_CFR1_CAL_PS_GAIN_OFFSET_MASK |
XSM_CFR1_CAL_ADC_GAIN_OFFSET_MASK);
/*
* Enable the Channel Sequencer in continuous sequencer cycling mode.
*/
XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);
/*
* Wait till the End of Sequence occurs.
*/
XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */
while ((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) !=
XSM_SR_EOS_MASK);
/*
* Read the ADC converted Data from the data registers for on-chip
* temperature, on-chip VCCINT voltage and on-chip VCCAUX voltage.
*/
TempRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
VccIntRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);
VccAuxRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);
/*
* Convert the Raw Data to Degrees Centigrade and Voltage.
*/
TempData = XSysMon_RawToTemperature(TempRawData);
VccIntData = XSysMon_RawToVoltage(VccIntRawData);
VccAuxData = XSysMon_RawToVoltage(VccAuxRawData);
printf("\r\nThe Current Temperature is %0d.%03d Centigrade.\r\n",
(int)(TempData), SysMonFractionToInt(TempData));
printf("\r\nThe Current VCCINT is %0d.%03d Volts. \r\n",
(int)(VccIntData), SysMonFractionToInt(VccIntData));
printf("\r\nThe Current VCCAUX is %0d.%03d Volts. \r\n",
(int)(VccAuxData), SysMonFractionToInt(VccAuxData));
/*
* Disable all the alarms in the Configuration Register 1.
*/
XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);
/*
* Set up Alarm threshold registers for the on-chip temperature and
* VCCAUX/VCCINT High limit and lower limit so that the alarms
* DONOT occur.
*/
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER,
XSysMon_TemperatureToRaw(TEST_TEMP_UPPER));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER,
XSysMon_TemperatureToRaw(TEST_TEMP_LOWER));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_UPPER,
XSysMon_VoltageToRaw(TEST_VCCINT_UPPER));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_LOWER,
XSysMon_VoltageToRaw(TEST_VCCINT_LOWER));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER,
XSysMon_VoltageToRaw(TEST_VCCAUX_UPPER));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER,
XSysMon_VoltageToRaw(TEST_VCCAUX_LOWER));
/*
* Setup the interrupt system.
*/
Status = SysMonSetupInterruptSystem(IntcInstPtr,
SysMonInstPtr,
SysMonIntrId);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Clear any bits set in the Interrupt Status Register.
*/
IntrStatus = XSysMon_IntrGetStatus(SysMonInstPtr);
XSysMon_IntrClear(SysMonInstPtr, IntrStatus);
/*
* Enable Alarm 0 interrupt for on-chip temperature,
* Alarm 1 interrupt for on-chip VCCINT and
* Alarm 2 interrupt for on-chip VCCAUX.
*/
XSysMon_IntrEnable(SysMonInstPtr,
XSM_IPIXR_TEMP_MASK |
XSM_IPIXR_VCCINT_MASK |
XSM_IPIXR_VCCAUX_MASK );
/*
* Enable global interrupt of System Monitor.
*/
XSysMon_IntrGlobalEnable(SysMonInstPtr);
/*
* Set up Alarm threshold registers for
* - On-chip Temperature High/Low limit
* - VCCINT High/Low limit
* - VCCAUX High/Low limit
* so that the Alarms occur.
*/
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER,
XSysMon_TemperatureToRaw(TempData - 10));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER,
XSysMon_TemperatureToRaw(TempData - 20));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_UPPER,
XSysMon_VoltageToRaw(VccIntData - 0.2));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_LOWER,
XSysMon_VoltageToRaw(VccIntData + 0.2));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER,
XSysMon_VoltageToRaw(VccAuxData - 0.2));
XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER,
XSysMon_VoltageToRaw(VccAuxData + 0.2));
/*
* Read the Temperature Alarm Threshold registers.
*/
Data = XSysMon_GetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER);
MaxData = XSysMon_RawToTemperature(Data);
printf("\r\nTemperature Alarm(0) ");
printf("HIGH Threshold is %0d.%03d Centigrade. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
Data = XSysMon_GetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER);
MinData = XSysMon_RawToTemperature(Data);
printf("Temperature Alarm(0) ");
printf("LOW Threshold is %0d.%03d Centigrade. \r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Read the VCCINT Alarm Threshold registers.
*/
Data = XSysMon_GetAlarmThreshold(SysMonInstPtr,
XSM_ATR_VCCINT_UPPER);
MaxData = XSysMon_RawToVoltage(Data);
printf("VCCINT Alarm(1) HIGH Threshold is %0d.%03d Volts. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
Data = XSysMon_GetAlarmThreshold(SysMonInstPtr,
XSM_ATR_VCCINT_LOWER);
MinData = XSysMon_RawToVoltage(Data);
printf("VCCINT Alarm(1) LOW Threshold is %0d.%03d Volts. \r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Read the VCCAUX Alarm Threshold registers.
*/
Data = XSysMon_GetAlarmThreshold(SysMonInstPtr,
XSM_ATR_VCCAUX_UPPER);
MaxData = XSysMon_RawToVoltage(Data);
printf("VCCAUX Alarm(2) HIGH Threshold is %0d.%03d Volts. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
Data = XSysMon_GetAlarmThreshold(SysMonInstPtr,
XSM_ATR_VCCAUX_LOWER);
MinData = XSysMon_RawToVoltage(Data);
printf("VCCAUX Alarm(2) LOW Threshold is %0d.%03d Volts. \r\n\r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Enable Alarm 0 for on-chip temperature , Alarm 1 for on-chip VCCINT
* and Alarm 2 for on-chip VCCAUX in the Configuration Register 1.
*/
XSysMon_SetAlarmEnables(SysMonInstPtr, (XSM_CFR1_ALM_TEMP_MASK |
XSM_CFR1_ALM_VCCINT_MASK |
XSM_CFR1_ALM_VCCAUX_MASK));
/*
* Wait until an Alarm 0 or Alarm 1 or Alarm 2 interrupt occurs.
*/
while (1) {
if (TempIntrActive == TRUE) {
/*
* Alarm 0 - Temperature alarm interrupt has occurred.
* The required processing should be put here.
*/
printf("Alarm 0 - Temperature alarm has occured \r\n");
break;
}
if (VccIntIntr == TRUE) {
/*
* Alarm 1 - VCCINT alarm interrupt has occurred.
* The required processing should be put here.
*/
printf("Alarm 1 - VCCINT alarm has occured \r\n");
break;
}
if (VccAuxIntr == TRUE) {
/*
* Alarm 2 - VCCAUX alarm interrupt has occurred.
* The required processing should be put here.
*/
printf("Alarm 2 - VCCAUX alarm has occured \r\n");
break;
}
}
/*
* Read the on-chip Temperature Data (Current/Maximum/Minimum)
* from the ADC data registers.
*/
TempRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
TempData = XSysMon_RawToTemperature(TempRawData);
TempRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MAX_TEMP);
MaxData = XSysMon_RawToTemperature(TempRawData);
TempRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MIN_TEMP);
MinData = XSysMon_RawToTemperature(TempRawData);
printf("\r\nThe Current Temperature is %0d.%03d Centigrade.\r\n",
(int)(TempData), SysMonFractionToInt(TempData));
printf("The Maximum Temperature is %0d.%03d Centigrade. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
printf("The Minimum Temperature is %0d.%03d Centigrade. \r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Read the VccInt Votage Data (Current/Maximum/Minimum) from the
* ADC data registers.
*/
VccIntRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);
VccIntData = XSysMon_RawToVoltage(VccIntRawData);
VccIntRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MAX_VCCINT);
MaxData = XSysMon_RawToVoltage(VccIntRawData);
VccIntRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MIN_VCCINT);
MinData = XSysMon_RawToVoltage(VccIntRawData);
printf("\r\nThe Current VCCINT is %0d.%03d Volts. \r\n",
(int)(VccIntData), SysMonFractionToInt(VccIntData));
printf("The Maximum VCCINT is %0d.%03d Volts. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
printf("The Minimum VCCINT is %0d.%03d Volts. \r\n",
(int)(MinData), SysMonFractionToInt(MinData));
/*
* Read the VccAux Voltage Data (Current/Maximum/Minimum) from the
* ADC data registers.
*/
VccAuxRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);
VccAuxData = XSysMon_RawToVoltage(VccAuxRawData);
VccAuxRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MAX_VCCAUX);
MaxData = XSysMon_RawToVoltage(VccAuxRawData);
VccAuxRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
XSM_MIN_VCCAUX);
MinData = XSysMon_RawToVoltage(VccAuxRawData);
printf("\r\nThe Current VCCAUX is %0d.%03d Volts. \r\n",
(int)(VccAuxData), SysMonFractionToInt(VccAuxData));
printf("The Maximum VCCAUX is %0d.%03d Volts. \r\n",
(int)(MaxData), SysMonFractionToInt(MaxData));
printf("The Minimum VCCAUX is %0d.%03d Volts. \r\n\r\n",
(int)(MinData), SysMonFractionToInt(MinData));
printf("Exiting the SysMon Interrupt Example. \r\n");
/*
* Disable global interrupt of System Monitor.
*/
XSysMon_IntrGlobalDisable(SysMonInstPtr);
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* This function is the Interrupt Service Routine for the System Monitor device.
* It will be called by the processor whenever an interrupt is asserted
* by the device.
*
* There are 10 different interrupts supported
* - Over Temperature
* - ALARM 0
* - ALARM 1
* - ALARM 2
* - End of Sequence
* - End of Conversion
* - JTAG Locked
* - JATG Modified
* - Over Temperature DeActive
* - ALARM 0 DeActive
*
* This function only handles ALARM 0, ALARM 1 and ALARM 2 interrupts.
* User of this code may need to modify the code to meet the needs of the
* application.
*
* @param CallBackRef is the callback reference passed from the Interrupt
* controller driver, which in our case is a pointer to the
* driver instance.
*
* @return None.
*
* @note This function is called within interrupt context.
*
******************************************************************************/
static void SysMonInterruptHandler(void *CallBackRef)
{
u32 IntrStatusValue;
XSysMon *SysMonPtr = (XSysMon *)CallBackRef;
/*
* Get the interrupt status from the device and check the value.
*/
IntrStatusValue = XSysMon_IntrGetStatus(SysMonPtr);
if (IntrStatusValue & XSM_IPIXR_TEMP_MASK) {
/*
* Set Temperature interrupt flag so the code
* in application context can be aware of this interrupt.
*/
TempIntrActive = TRUE;
}
if (IntrStatusValue & XSM_IPIXR_VCCINT_MASK) {
/*
* Set VCCINT interrupt flag so the code in application context
* can be aware of this interrupt.
*/
VccIntIntr = TRUE;
}
if (IntrStatusValue & XSM_IPIXR_VCCAUX_MASK) {
/*
* Set VCCAUX interrupt flag so the code in application context
* can be aware of this interrupt.
*/
VccAuxIntr = TRUE;
}
/*
* Clear all bits in Interrupt Status Register.
*/
XSysMon_IntrClear(SysMonPtr, IntrStatusValue);
}
/****************************************************************************/
/**
*
* This function sets up the interrupt system so interrupts can occur for the
* System Monitor/ADC. The function is application-specific since the actual
* system may or may not have an interrupt controller. The System Monitor/ADC
* device could be directly connected to a processor without an interrupt
* controller. The user should modify this function to fit the application.
*
* @param IntcInstPtr is a pointer to the Interrupt Controller driver
* Instance.
* @param SysMonPtr is a pointer to the driver instance for the System
* Monitor device which is going to be connected to the interrupt
* controller.
* @param IntrId is XPAR_<INTC_instance>_<SYSMON_ADC_instance>_VEC_ID
* value from xparameters.h
*
* @return XST_SUCCESS if successful, or XST_FAILURE.
*
* @note None.
*
*
****************************************************************************/
static int SysMonSetupInterruptSystem(INTC* IntcInstPtr, XSysMon *SysMonPtr,
u16 IntrId )
{
int Status;
#ifdef XPAR_INTC_0_DEVICE_ID
/*
* Initialize the interrupt controller driver so that it's ready to
* use.
*/
Status = XIntc_Initialize(IntcInstPtr, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Connect the handler that will be called when an interrupt
* for the device occurs, the handler defined above performs the
* specific interrupt processing for the device.
*/
Status = XIntc_Connect(IntcInstPtr,
IntrId,
(XInterruptHandler) SysMonInterruptHandler,
SysMonPtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Start the interrupt controller so interrupts are enabled for all
* devices that cause interrupts. Specify real mode so that the System
* Monitor/ACD device can cause interrupts through the interrupt
* controller.
*/
Status = XIntc_Start(IntcInstPtr, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Enable the interrupt for the System Monitor/ADC device.
*/
XIntc_Enable(IntcInstPtr, IntrId);
#else
XScuGic_Config *IntcConfig;
/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == IntcConfig) {
return XST_FAILURE;
}
Status = XScuGic_CfgInitialize(IntcInstPtr, IntcConfig,
IntcConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
XScuGic_SetPriorityTriggerType(IntcInstPtr, IntrId, 0xA0, 0x3);
/*
* Connect the interrupt handler that will be called when an
* interrupt occurs for the device.
*/
Status = XScuGic_Connect(IntcInstPtr, IntrId,
(Xil_ExceptionHandler)SysMonInterruptHandler,
SysMonPtr);
if (Status != XST_SUCCESS) {
return Status;
}
/*
* Enable the interrupt for the Timer device.
*/
XScuGic_Enable(IntcInstPtr, IntrId);
#endif
/*
* Initialize the exception table.
*/
Xil_ExceptionInit();
/*
* Register the interrupt controller handler with the exception table.
*/
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler) INTC_HANDLER,
IntcInstPtr);
/*
* Enable non-critical exceptions.
*/
Xil_ExceptionEnable();
return XST_SUCCESS;
}
/****************************************************************************/
/*
*
* This function converts the fraction part of the given floating point number
* (after the decimal point)to an integer.
*
* @param FloatNum is the floating point number.
*
* @return Integer number to a precision of 3 digits.
*
* @note
* This function is used in the printing of floating point data to a STDIO
* device using the xil_printf function. The xil_printf is a very small
* foot-print printf function and does not support the printing of floating
* point numbers.
*
*****************************************************************************/
int SysMonFractionToInt(float FloatNum)
{
float Temp;
Temp = FloatNum;
if (FloatNum < 0) {
Temp = -(FloatNum);
}
return( ((int)((Temp -(float)((int)Temp)) * (1000.0f))));
}