embeddedsw/XilinxProcessorIPLib/drivers/axidma/examples/xaxidma_multichan_sg_intr.c

1319 lines
35 KiB
C
Raw Normal View History

/******************************************************************************
*
* (c) Copyright 2010-2013 Xilinx, Inc. All rights reserved.
*
* This file contains confidential and proprietary information of Xilinx, Inc.
* and is protected under U.S. and international copyright and other
* intellectual property laws.
*
* DISCLAIMER
* This disclaimer is not a license and does not grant any rights to the
* materials distributed herewith. Except as otherwise provided in a valid
* license issued to you by Xilinx, and to the maximum extent permitted by
* applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL
* FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
* IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
* MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;
* and (2) Xilinx shall not be liable (whether in contract or tort, including
* negligence, or under any other theory of liability) for any loss or damage
* of any kind or nature related to, arising under or in connection with these
* materials, including for any direct, or any indirect, special, incidental,
* or consequential loss or damage (including loss of data, profits, goodwill,
* or any type of loss or damage suffered as a result of any action brought by
* a third party) even if such damage or loss was reasonably foreseeable or
* Xilinx had been advised of the possibility of the same.
*
* CRITICAL APPLICATIONS
* Xilinx products are not designed or intended to be fail-safe, or for use in
* any application requiring fail-safe performance, such as life-support or
* safety devices or systems, Class III medical devices, nuclear facilities,
* applications related to the deployment of airbags, or any other applications
* that could lead to death, personal injury, or severe property or
* environmental damage (individually and collectively, "Critical
* Applications"). Customer assumes the sole risk and liability of any use of
* Xilinx products in Critical Applications, subject only to applicable laws
* and regulations governing limitations on product liability.
*
* THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE
* AT ALL TIMES.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xaximcdma_example_sg_intr.c
*
* This file demonstrates how to use the xaxidma driver on the Xilinx AXI
* DMA core v6_00_a (AXIDMA) to transfer packets in interrupt mode for
* Multiple Channel capability.
* Thi example is designed to work only when AXIDMA core is configured
* in Scatter Gather Mode and Multiple Channel mode.
*
* We show how to do multiple packets transfers, as well as how to do multiple
* BDs per packet transfers.
*
* This code is tested only with two channels on both Tx and Rx.
* This code assumes a loopback hardware widget is connected to the AXI DMA
* core for data packet loopback. The loopback widget is configured in a way
* that, when a packet is transmitted on "Tx Channel 0" it will be received
* on the "Rx channel 1" and if "Tx Channel 1" it is on Rx Channel 0.
* Both the cases are included in this example.
*
* To see the debug print, you need a Uart16550 or uartlite in your system,
* and please set "-DDEBUG" in your compiler options. You need to rebuild your
* software executable.
*
* Make sure that MEMORY_BASE is defined properly as per the HW system. The
* h/w system built in Area mode has a maximum DDR memory limit of 64MB. In
* throughput mode, it is 512MB. These limits are need to ensured for
* proper operation of this code.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -------------------------------------------------------
* 1.00a srt 03/27/12 First release
* 2.00a srt 06/18/12 API calls are reverted back for backward compatibility.
* 2.01a srt 11/02/12 Buffer sizes (Tx and Rx) are modified to meet maximum
* DDR memory limit of the h/w system built with Area mode
* 7.02a srt 03/01/13 Updated DDR base address for IPI designs (CR 703656).
*
* </pre>
*
* ***************************************************************************
*/
/***************************** Include Files *********************************/
#include "xaxidma.h"
#include "xparameters.h"
#include "xil_exception.h"
#include "xdebug.h"
#include "xaxidma_bd.h"
#ifdef XPAR_UARTNS550_0_BASEADDR
#include "xuartns550_l.h" /* to use uartns550 */
#endif
#ifndef DEBUG
extern void xil_printf(const char *format, ...);
#endif
#ifdef XPAR_INTC_0_DEVICE_ID
#include "xintc.h"
#else
#include "xscugic.h"
#endif
/******************** Constant Definitions **********************************/
/*
* Device hardware build related constants.
*/
#define DMA_DEV_ID XPAR_AXIDMA_0_DEVICE_ID
#ifdef XPAR_V6DDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_V6DDR_0_S_AXI_BASEADDR
#elif XPAR_S6DDR_0_S0_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_S6DDR_0_S0_AXI_BASEADDR
#elif XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#define DDR_BASE_ADDR XPAR_AXI_7SDDR_0_S_AXI_BASEADDR
#elif XPAR_MIG7SERIES_0_BASEADDR
#define DDR_BASE_ADDR XPAR_MIG7SERIES_0_BASEADDR
#endif
#ifndef DDR_BASE_ADDR
#warning CHECK FOR THE VALID DDR ADDRESS IN XPARAMETERS.H, \
DEFAULT SET TO 0x01000000
#define MEM_BASE_ADDR 0x01000000
#else
#define MEM_BASE_ADDR (DDR_BASE_ADDR + 0x1000000)
#endif
#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID
#else
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#endif
#ifdef XPAR_INTC_0_DEVICE_ID
#define RX_INTR_ID XPAR_INTC_0_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_INTC_0_AXIDMA_0_MM2S_INTROUT_VEC_ID
#else
#define RX_INTR_ID XPAR_FABRIC_AXIDMA_0_S2MM_INTROUT_VEC_ID
#define TX_INTR_ID XPAR_FABRIC_AXIDMA_0_MM2S_INTROUT_VEC_ID
#endif
#define RX_BD_SPACE_BASE (MEM_BASE_ADDR)
#define RX_BD_SPACE_HIGH (MEM_BASE_ADDR + 0x0000FFFF)
#define TX_BD_SPACE_BASE (MEM_BASE_ADDR + 0x00040000)
#define TX_BD_SPACE_HIGH (MEM_BASE_ADDR + 0x0004FFFF)
#define TX_BUFFER_BASE (MEM_BASE_ADDR + 0x00100000)
#define RX_BUFFER_BASE (MEM_BASE_ADDR + 0x00300000)
#define RX_BUFFER_HIGH (MEM_BASE_ADDR + 0x004FFFFF)
#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_INTC_0_DEVICE_ID
#else
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#endif
/* Timeout loop counter for reset
*/
#define RESET_TIMEOUT_COUNTER 10000
/*
* Number of BDs in the transfer example
* We show how to submit multiple BDs for one transmit.
* The receive side gets one completion per transfer.
*/
#define NUMBER_OF_BDS_PER_PKT 2
#define NUMBER_OF_PKTS_TO_TRANSFER 1
#define NUMBER_OF_BDS_TO_TRANSFER (NUMBER_OF_PKTS_TO_TRANSFER * \
NUMBER_OF_BDS_PER_PKT)
#define MAX_BD_COUNT 1024
/* The interrupt coalescing threshold and delay timer threshold
* Valid range is 1
*
* Note: Coalescing threshold configured for more than one is not
* supported by the AXIDMA IP v6_00_a.
*/
#define COALESCING_COUNT 1
#define DELAY_TIMER_COUNT 100
#ifdef XPAR_INTC_0_DEVICE_ID
#define INTC XIntc
#define INTC_HANDLER XIntc_InterruptHandler
#else
#define INTC XScuGic
#define INTC_HANDLER XScuGic_InterruptHandler
#endif
/*
* Packet Data Values
*/
#define PACKET0_DATA 0x1
#define PACKET1_DATA 0xC
/*
* MCDMA Values
*/
#define TID0 0x0 /* Stream identifier 0 */
#define TDEST0 0x0 /* Coarse Routing info for stream 0 */
#define TID1 0x1 /* Stream identifier 1 */
#define TDEST1 0x1 /* Coarse Routing info for stream 1 */
#define TUSER 0x0 /* User defined sideband signaling */
#define ARCACHE 0x3 /* Cache type */
#define ARUSER 0x0 /* Sideband signals */
#define VSIZE 0x4 /* Vsize */
#define STRIDE 0x20 /* Stride control */
#define HSIZE 0x100 /* Hsize */
/*
* Buffer and Buffer Descriptor related constant definition
*/
#define MAX_PKT_LEN VSIZE * STRIDE
/**************************** Type Definitions *******************************/
/***************** Macros (Inline Functions) Definitions *********************/
/************************** Function Prototypes ******************************/
#ifdef XPAR_UARTNS550_0_BASEADDR
static void Uart550_Setup(void);
#endif
static int CheckData(int Length, u8 *RxPacket, u8 StartValue);
static void TxCallBack(XAxiDma * AxiDmaInstPtr);
static void TxIntrHandler(void *Callback);
static void RxCallBack(XAxiDma * AxiDmaInstPtr);
static void RxIntrHandler(void *Callback);
extern void XaxiDma_DumpBd(XAxiDma_Bd *BdPtr);
static int SetupIntrSystem(INTC * IntcInstancePtr,
XAxiDma * AxiDmaPtr, u16 TxIntrId,
u16 RxIntrId, int RingIndex);
static void DisableIntrSystem(INTC * IntcInstancePtr,
u16 TxIntrId, u16 RxIntrId);
static int RxSetup(XAxiDma * AxiDmaInstPtr);
static int TxSetup(XAxiDma * AxiDmaInstPtr);
static int SendPacket(XAxiDma * AxiDmaInstPtr,
u8 TDest, u8 TId, u8 Value);
/************************** Variable Definitions *****************************/
/*
* Device instance definitions
*/
XAxiDma AxiDma;
static INTC Intc; /* Instance of the Interrupt Controller */
/*
* Flags interrupt handlers use to notify the application context the events.
*/
volatile int TxDone;
volatile int RxDone;
volatile int Error;
/*
* Buffer for transmit packet. Must be 32-bit aligned to be used by DMA.
*/
u32 *Packet = (u32 *) TX_BUFFER_BASE;
/*
* Buffer for Receive packet. Must be 32-bit aligned to be used by DMA.
*/
u8 *RxPacket0 = (u8 *) RX_BUFFER_BASE;
u8 *RxPacket1 = (u8 *) (RX_BUFFER_BASE + MAX_BD_COUNT
* MAX_PKT_LEN);
/*****************************************************************************/
/**
*
* Main function
*
* This function is the main entry of the interrupt test. It does the following:
* - Set up the output terminal if UART16550 is in the hardware build
* - Initialize the DMA engine
* - Set up Tx and Rx channels
* - Set up the interrupt system for the Tx and Rx interrupts
* - Submit a transfer
* - Wait for the transfer to finish
* - Check transfer status
* - Disable Tx and Rx interrupts
* - Print test status and exit
*
* @param None
*
* @return - XST_SUCCESS if tests pass
* - XST_FAILURE if fails.
*
* @note None.
*
******************************************************************************/
int main(void)
{
int Status;
XAxiDma_Config *Config;
/* Initial setup for Uart16550 */
#ifdef XPAR_UARTNS550_0_BASEADDR
Uart550_Setup();
#endif
xil_printf("\r\n--- Entering main() --- \r\n");
Config = XAxiDma_LookupConfig(DMA_DEV_ID);
if (!Config) {
xil_printf("No config found for %d\r\n", DMA_DEV_ID);
return XST_FAILURE;
}
/* Initialize DMA engine */
XAxiDma_CfgInitialize(&AxiDma, Config);
if(!XAxiDma_HasSg(&AxiDma)) {
xil_printf("Device configured as Simple mode \r\n");
return XST_FAILURE;
}
/* Set up TX/RX channels to be ready to transmit and receive packets */
Status = TxSetup(&AxiDma);
if (Status != XST_SUCCESS) {
xil_printf("Failed TX setup\r\n");
return XST_FAILURE;
}
Status = RxSetup(&AxiDma);
if (Status != XST_SUCCESS) {
xil_printf("Failed RX setup\r\n");
return XST_FAILURE;
}
/* Set up Interrupt system */
Status = SetupIntrSystem(&Intc, &AxiDma, TX_INTR_ID,
RX_INTR_ID, 1);
if (Status != XST_SUCCESS) {
xil_printf("Failed intr setup\r\n");
return XST_FAILURE;
}
/* Initialize flags before start transfer test */
TxDone = 0;
RxDone = 0;
Error = 0;
/* Send a packet */
Status = SendPacket(&AxiDma, TDEST0, TID0, PACKET0_DATA);
if (Status != XST_SUCCESS) {
xil_printf("Failed send packet\r\n");
return XST_FAILURE;
}
/*
* Wait TX done and RX done
*/
while (((TxDone < NUMBER_OF_BDS_TO_TRANSFER) ||
(RxDone < NUMBER_OF_BDS_TO_TRANSFER)) && !Error) {
/* NOP */
}
if (Error) {
xil_printf("Failed test transmit%s done, "
"receive%s done\r\n", TxDone? "":" not",
RxDone? "":" not");
goto Done;
}else {
/*
* Test finished, check data
*/
Status = CheckData(MAX_PKT_LEN * NUMBER_OF_BDS_TO_TRANSFER,
RxPacket1, PACKET0_DATA);
if (Status != XST_SUCCESS) {
xil_printf("Data check failed\r\n");
goto Done;
}
}
xil_printf("Sent Packet with Tdest 0 Successfully\n\r");
/* Initialize flags before start transfer test */
TxDone = 0;
RxDone = 0;
Error = 0;
/* Send a packet */
Status = SendPacket(&AxiDma, TDEST1, TID1, PACKET1_DATA);
if (Status != XST_SUCCESS) {
xil_printf("Failed send packet\r\n");
return XST_FAILURE;
}
/*
* Wait TX done and RX done
*/
while (((TxDone < NUMBER_OF_BDS_TO_TRANSFER) ||
(RxDone < NUMBER_OF_BDS_TO_TRANSFER)) && !Error) {
/* NOP */
}
if (Error) {
xil_printf("Failed test transmit%s done, "
"receive%s done\r\n", TxDone? "":" not",
RxDone? "":" not");
goto Done;
}else {
/*
* Test finished, check data
*/
Status = CheckData(MAX_PKT_LEN * NUMBER_OF_BDS_TO_TRANSFER,
RxPacket0, PACKET1_DATA);
if (Status != XST_SUCCESS) {
xil_printf("Data check failed\r\n");
goto Done;
}
}
/* Disable TX and RX Ring interrupts and return success */
DisableIntrSystem(&Intc, TX_INTR_ID, RX_INTR_ID);
xil_printf("Sent Packet with Tdest 1 Successfully\n\r");
xil_printf("AXI DMA SG interrupt Test passed\r\n");
Done:
xil_printf("--- Exiting main() --- \r\n");
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
return XST_SUCCESS;
}
#ifdef XPAR_UARTNS550_0_BASEADDR
/*****************************************************************************/
/*
*
* Uart16550 setup routine, need to set baudrate to 9600 and data bits to 8
*
* @param None
*
* @return None
*
* @note None.
*
******************************************************************************/
static void Uart550_Setup(void)
{
XUartNs550_SetBaud(XPAR_UARTNS550_0_BASEADDR,
XPAR_XUARTNS550_CLOCK_HZ, 9600);
XUartNs550_SetLineControlReg(XPAR_UARTNS550_0_BASEADDR,
XUN_LCR_8_DATA_BITS);
}
#endif
/*****************************************************************************/
/*
*
* This function checks data buffer after the DMA transfer is finished.
*
* We use the static tx/rx buffers.
*
* @param Length is the length to check
* @param StartValue is the starting value of the first byte
*
* @return - XST_SUCCESS if validation is successful
* - XST_FAILURE if validation fails.
*
* @note None.
*
******************************************************************************/
static int CheckData(int Length, u8 *RxPacket, u8 StartValue)
{
int Index = 0;
u8 Value;
Value = StartValue;
/* Invalidate the DestBuffer before receiving the data, in case the
* Data Cache is enabled
*/
Xil_DCacheInvalidateRange((u32)RxPacket, Length);
for(Index = 0; Index < Length; Index++) {
if (RxPacket[Index] != Value) {
xil_printf("Data error %d: %x/%x\r\n",
Index, RxPacket[Index], Value);
return XST_FAILURE;
}
Value = (Value + 1) & 0xFF;
}
return XST_SUCCESS;
}
/*****************************************************************************/
/*
*
* This is the DMA TX callback function to be called by TX interrupt handler.
* This function handles BDs finished by hardware.
*
* @param TxRingPtr is a pointer to TX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void TxCallBack(XAxiDma *AxiDmaPtr)
{
int BdCount;
u32 BdSts;
XAxiDma_Bd *BdPtr;
XAxiDma_Bd *BdCurPtr;
int Status;
int Index;
XAxiDma_BdRing *TxRingPtr = XAxiDma_GetTxRing(AxiDmaPtr);
/* Get all processed BDs from hardware */
BdCount = XAxiDma_BdRingFromHw(TxRingPtr, XAXIDMA_ALL_BDS, &BdPtr);
/* Handle the BDs */
BdCurPtr = BdPtr;
for (Index = 0; Index < BdCount; Index++) {
/*
* Check the status in each BD
* If error happens, the DMA engine will be halted after this
* BD processing stops.
*/
BdSts = XAxiDma_BdGetSts(BdCurPtr);
if ((BdSts & XAXIDMA_BD_STS_ALL_ERR_MASK) ||
(!(BdSts & XAXIDMA_BD_STS_COMPLETE_MASK))) {
Error = 1;
break;
}
/*
* Here we don't need to do anything. But if a RTOS is being
* used, we may need to free the packet buffer attached to
* the processed BD
*/
/* Find the next processed BD */
BdCurPtr = XAxiDma_BdRingNext(TxRingPtr, BdCurPtr);
}
/* Free all processed BDs for future transmission */
Status = XAxiDma_BdRingFree(TxRingPtr, BdCount, BdPtr);
if (Status != XST_SUCCESS) {
Error = 1;
}
if(!Error) {
TxDone += BdCount;
}
}
/*****************************************************************************/
/*
*
* This is the DMA TX Interrupt handler function.
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* presents, then it calls the callback function.
*
* @param Callback is a pointer to TX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void TxIntrHandler(void *Callback)
{
XAxiDma *AxiDmaPtr = (XAxiDma *) Callback;
XAxiDma_BdRing *TxRingPtr = XAxiDma_GetTxRing(AxiDmaPtr);
u32 IrqStatus;
int TimeOut;
/* Read pending interrupts */
IrqStatus = XAxiDma_BdRingGetIrq(TxRingPtr);
/* Acknowledge pending interrupts */
XAxiDma_BdRingAckIrq(TxRingPtr, IrqStatus);
/* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
return;
}
/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {
Error = 1;
/*
* Reset should never fail for transmit channel
*/
XAxiDma_Reset(&AxiDma);
TimeOut = RESET_TIMEOUT_COUNTER;
while (TimeOut) {
if (XAxiDma_ResetIsDone(&AxiDma)) {
break;
}
TimeOut -= 1;
}
return;
}
/*
* If Transmit done interrupt is asserted, call TX call back function
* to handle the processed BDs and raise the according flag
*/
if ((IrqStatus & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK))) {
TxCallBack(AxiDmaPtr);
}
}
/*****************************************************************************/
/*
*
* This is the DMA RX callback function called by the RX interrupt handler.
* This function handles finished BDs by hardware, attaches new buffers to those
* BDs, and give them back to hardware to receive more incoming packets
*
* @param RxRingPtr is a pointer to RX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void RxCallBack(XAxiDma *AxiDmaPtr)
{
int BdCount;
XAxiDma_Bd *BdPtr;
XAxiDma_Bd *BdCurPtr;
u32 BdSts;
int Index;
int RingIndex;
XAxiDma_BdRing *RxRingPtr;
for (RingIndex = 0;
RingIndex < AxiDmaPtr->RxNumChannels; RingIndex++) {
RxRingPtr = XAxiDma_GetRxIndexRing(AxiDmaPtr, RingIndex);
BdCount = XAxiDma_BdRingFromHw(RxRingPtr, XAXIDMA_ALL_BDS, &BdPtr);
BdCurPtr = BdPtr;
for (Index = 0; Index < BdCount; Index++) {
/*
* Check the flags set by the hardware for status
* If error happens, processing stops, because the DMA engine
* is halted after this BD.
*/
BdSts = XAxiDma_BdGetSts(BdCurPtr);
if ((BdSts & XAXIDMA_BD_STS_ALL_ERR_MASK) ||
(!(BdSts & XAXIDMA_BD_STS_COMPLETE_MASK))) {
Error = 1;
break;
}
/* Find the next processed BD */
BdCurPtr = XAxiDma_BdRingNext(RxRingPtr, BdCurPtr);
RxDone += 1;
}
}
}
/*****************************************************************************/
/*
*
* This is the DMA RX interrupt handler function
*
* It gets the interrupt status from the hardware, acknowledges it, and if any
* error happens, it resets the hardware. Otherwise, if a completion interrupt
* presents, then it calls the callback function.
*
* @param Callback is a pointer to RX channel of the DMA engine.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void RxIntrHandler(void *Callback)
{
XAxiDma *AxiDmaPtr = (XAxiDma *) Callback;
XAxiDma_BdRing *RxRingPtr = XAxiDma_GetRxIndexRing(AxiDmaPtr, 0);
u32 IrqStatus;
int TimeOut;
/* Read pending interrupts */
IrqStatus = XAxiDma_BdRingGetIrq(RxRingPtr);
/* Acknowledge pending interrupts */
XAxiDma_BdRingAckIrq(RxRingPtr, IrqStatus);
/*
* If no interrupt is asserted, we do not do anything
*/
if (!(IrqStatus & XAXIDMA_IRQ_ALL_MASK)) {
return;
}
/*
* If error interrupt is asserted, raise error flag, reset the
* hardware to recover from the error, and return with no further
* processing.
*/
if ((IrqStatus & XAXIDMA_IRQ_ERROR_MASK)) {
Error = 1;
/* Reset could fail and hang
* NEED a way to handle this or do not call it??
*/
XAxiDma_Reset(&AxiDma);
TimeOut = RESET_TIMEOUT_COUNTER;
while (TimeOut) {
if(XAxiDma_ResetIsDone(&AxiDma)) {
break;
}
TimeOut -= 1;
}
return;
}
/*
* If completion interrupt is asserted, call RX call back function
* to handle the processed BDs and then raise the according flag.
*/
if ((IrqStatus & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK))) {
RxCallBack(AxiDmaPtr);
}
}
/*****************************************************************************/
/*
*
* This function setups the interrupt system so interrupts can occur for the
* DMA, it assumes INTC component exists in the hardware system.
*
* @param IntcInstancePtr is a pointer to the instance of the INTC.
* @param AxiDmaPtr is a pointer to the instance of the DMA engine
* @param TxIntrId is the TX channel Interrupt ID.
* @param RxIntrId is the RX channel Interrupt ID.
*
* @return
* - XST_SUCCESS if successful,
* - XST_FAILURE.if not succesful
*
* @note None.
*
******************************************************************************/
static int SetupIntrSystem(INTC * IntcInstancePtr,
XAxiDma * AxiDmaPtr, u16 TxIntrId,
u16 RxIntrId, int RingIndex)
{
int Status;
#ifdef XPAR_INTC_0_DEVICE_ID
/* Initialize the interrupt controller and connect the ISRs */
Status = XIntc_Initialize(IntcInstancePtr, INTC_DEVICE_ID);
if (Status != XST_SUCCESS) {
xil_printf("Failed init intc\r\n");
return XST_FAILURE;
}
Status = XIntc_Connect(IntcInstancePtr, TxIntrId,
(XInterruptHandler) TxIntrHandler, AxiDmaPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed tx connect intc\r\n");
return XST_FAILURE;
}
Status = XIntc_Connect(IntcInstancePtr, RxIntrId,
(XInterruptHandler) RxIntrHandler, AxiDmaPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed rx connect intc\r\n");
return XST_FAILURE;
}
/* Start the interrupt controller */
Status = XIntc_Start(IntcInstancePtr, XIN_REAL_MODE);
if (Status != XST_SUCCESS) {
xil_printf("Failed to start intc\r\n");
return XST_FAILURE;
}
XIntc_Enable(IntcInstancePtr, TxIntrId);
XIntc_Enable(IntcInstancePtr, RxIntrId);
#else
XScuGic_Config *IntcConfig;
/*
* Initialize the interrupt controller driver so that it is ready to
* use.
*/
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);
if (NULL == IntcConfig) {
return XST_FAILURE;
}
Status = XScuGic_CfgInitialize(IntcInstancePtr, IntcConfig,
IntcConfig->CpuBaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
XScuGic_SetPriorityTriggerType(IntcInstancePtr, TxIntrId, 0xA0, 0x3);
XScuGic_SetPriorityTriggerType(IntcInstancePtr, RxIntrId, 0xA0, 0x3);
/*
* Connect the device driver handler that will be called when an
* interrupt for the device occurs, the handler defined above performs
* the specific interrupt processing for the device.
*/
Status = XScuGic_Connect(IntcInstancePtr, TxIntrId,
(Xil_InterruptHandler)TxIntrHandler,
AxiDmaPtr);
if (Status != XST_SUCCESS) {
return Status;
}
Status = XScuGic_Connect(IntcInstancePtr, RxIntrId,
(Xil_InterruptHandler)RxIntrHandler,
AxiDmaPtr);
if (Status != XST_SUCCESS) {
return Status;
}
XScuGic_Enable(IntcInstancePtr, TxIntrId);
XScuGic_Enable(IntcInstancePtr, RxIntrId);
#endif
/* Enable interrupts from the hardware */
Xil_ExceptionInit();
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)INTC_HANDLER,
(void *)IntcInstancePtr);
Xil_ExceptionEnable();
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* This function disables the interrupts for DMA engine.
*
* @param IntcInstancePtr is the pointer to the INTC component instance
* @param TxIntrId is interrupt ID associated w/ DMA TX channel
* @param RxIntrId is interrupt ID associated w/ DMA RX channel
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void DisableIntrSystem(INTC * IntcInstancePtr,
u16 TxIntrId, u16 RxIntrId)
{
#ifdef XPAR_INTC_0_DEVICE_ID
/* Disconnect the interrupts for the DMA TX and RX channels */
XIntc_Disconnect(IntcInstancePtr, TxIntrId);
XIntc_Disconnect(IntcInstancePtr, RxIntrId);
#else
XScuGic_Disconnect(IntcInstancePtr, TxIntrId);
XScuGic_Disconnect(IntcInstancePtr, RxIntrId);
#endif
}
/*****************************************************************************/
/*
*
* This function sets up RX channel of the DMA engine to be ready for packet
* reception
*
* @param AxiDmaInstPtr is the pointer to the instance of the DMA engine.
*
* @return - XST_SUCCESS if the setup is successful.
* - XST_FAILURE if fails.
*
* @note None.
*
******************************************************************************/
static int RxSetup(XAxiDma * AxiDmaInstPtr)
{
XAxiDma_BdRing *RxRingPtr;
int Status;
XAxiDma_Bd BdTemplate;
XAxiDma_Bd *BdPtr;
XAxiDma_Bd *BdCurPtr;
int BdCount;
int FreeBdCount;
u32 RxBufferPtr;
u32 RxBdSpacePtr;
int Index;
int RingIndex;
RxBufferPtr = RX_BUFFER_BASE;
RxBdSpacePtr = RX_BD_SPACE_BASE;
for (RingIndex = 0;
RingIndex < AxiDmaInstPtr->RxNumChannels; RingIndex++) {
RxRingPtr = XAxiDma_GetRxIndexRing(&AxiDma, RingIndex);
/* Disable all RX interrupts before RxBD space setup */
XAxiDma_BdRingIntDisable(RxRingPtr,
XAXIDMA_IRQ_ALL_MASK);
/* Setup Rx BD space */
BdCount = XAxiDma_BdRingCntCalc(XAXIDMA_BD_MINIMUM_ALIGNMENT,
RX_BD_SPACE_HIGH - RX_BD_SPACE_BASE + 1);
Status = XAxiDma_BdRingCreate(RxRingPtr,
RxBdSpacePtr,
RxBdSpacePtr,
XAXIDMA_BD_MINIMUM_ALIGNMENT,
BdCount);
if (Status != XST_SUCCESS) {
xil_printf("Rx bd create failed with %d\r\n",
Status);
return XST_FAILURE;
}
/*
* Setup a BD template for the Rx channel. Then copy it
* to every RX BD.
*/
XAxiDma_BdClear(&BdTemplate);
Status = XAxiDma_BdRingClone(RxRingPtr,
&BdTemplate);
if (Status != XST_SUCCESS) {
xil_printf("Rx bd clone failed with %d\r\n",
Status);
return XST_FAILURE;
}
/* Attach buffers to RxBD ring so we are ready to receive packets */
FreeBdCount = XAxiDma_BdRingGetFreeCnt(RxRingPtr);
Status = XAxiDma_BdRingAlloc(RxRingPtr,
FreeBdCount, &BdPtr);
if (Status != XST_SUCCESS) {
xil_printf("Rx bd alloc failed with %d\r\n",
Status);
return XST_FAILURE;
}
BdCurPtr = BdPtr;
for (Index = 0; Index < FreeBdCount; Index++) {
Status = XAxiDma_BdSetBufAddr(BdCurPtr, RxBufferPtr);
if (Status != XST_SUCCESS) {
xil_printf("Rx set buffer addr %x on BD %x failed %d\r\n",
(unsigned int)RxBufferPtr,
(unsigned int)BdCurPtr, Status);
return XST_FAILURE;
}
Status = XAxiDma_BdSetLength(BdCurPtr, HSIZE,
RxRingPtr->MaxTransferLen);
if (Status != XST_SUCCESS) {
xil_printf("Rx set length %d on BD %x failed %d\r\n",
MAX_PKT_LEN, (unsigned int)BdCurPtr, Status);
return XST_FAILURE;
}
/* Receive BDs do not need to set anything for the control
* The hardware will set the SOF/EOF bits per stream status
*/
XAxiDma_BdSetCtrl(BdCurPtr, 0);
XAxiDma_BdSetId(BdCurPtr, RxBufferPtr);
XAxiDma_BdSetARCache(BdCurPtr, ARCACHE);
XAxiDma_BdSetARUser(BdCurPtr, ARUSER);
XAxiDma_BdSetVSize(BdCurPtr, VSIZE);
XAxiDma_BdSetStride(BdCurPtr, STRIDE);
RxBufferPtr += MAX_PKT_LEN;
BdCurPtr = XAxiDma_BdRingNext(RxRingPtr, BdCurPtr);
}
/*
* Set the coalescing threshold, so only one receive interrupt
* occurs for this example
*
* If you would like to have multiple interrupts to happen, change
* the COALESCING_COUNT to be a smaller value
*/
Status = XAxiDma_BdRingSetCoalesce(RxRingPtr, COALESCING_COUNT,
DELAY_TIMER_COUNT);
if (Status != XST_SUCCESS) {
xil_printf("Rx set coalesce failed with %d\r\n", Status);
return XST_FAILURE;
}
Status = XAxiDma_BdRingToHw(RxRingPtr, FreeBdCount, BdPtr);
if (Status != XST_SUCCESS) {
xil_printf("Rx ToHw failed with %d\r\n", Status);
return XST_FAILURE;
}
/* Enable all RX interrupts */
XAxiDma_BdRingIntEnable(RxRingPtr, XAXIDMA_IRQ_ALL_MASK);
/* Start RX DMA channel */
Status = XAxiDma_UpdateBdRingCDesc(RxRingPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed bd start %x\r\n", Status);
return XST_FAILURE;
}
RxBdSpacePtr += BdCount * sizeof(XAxiDma_Bd);
}
for (RingIndex = 0;
RingIndex < AxiDmaInstPtr->RxNumChannels; RingIndex++) {
RxRingPtr = XAxiDma_GetRxIndexRing(&AxiDma, RingIndex);
Status = XAxiDma_StartBdRingHw(RxRingPtr);
if (Status != XST_SUCCESS) {
xil_printf("Rx start BD ring failed with %d\r\n", Status);
return XST_FAILURE;
}
}
return XST_SUCCESS;
}
/*****************************************************************************/
/*
*
* This function sets up the TX channel of a DMA engine to be ready for packet
* transmission.
*
* @param AxiDmaInstPtr is the pointer to the instance of the DMA engine.
*
* @return - XST_SUCCESS if the setup is successful.
* - XST_FAILURE otherwise.
*
* @note None.
*
******************************************************************************/
static int TxSetup(XAxiDma * AxiDmaInstPtr)
{
XAxiDma_BdRing *TxRingPtr = XAxiDma_GetTxRing(&AxiDma);
XAxiDma_Bd BdTemplate;
int Status;
u32 BdCount;
u32 TxBdSpacePtr = TX_BD_SPACE_BASE;
/* Disable all TX interrupts before TxBD space setup */
XAxiDma_BdRingIntDisable(TxRingPtr, XAXIDMA_IRQ_ALL_MASK);
/* Setup TxBD space */
BdCount = XAxiDma_BdRingCntCalc(XAXIDMA_BD_MINIMUM_ALIGNMENT,
(u32)TX_BD_SPACE_HIGH - (u32)TX_BD_SPACE_BASE + 1);
Status = XAxiDma_BdRingCreate(TxRingPtr, TxBdSpacePtr,
TxBdSpacePtr,
XAXIDMA_BD_MINIMUM_ALIGNMENT, BdCount);
if (Status != XST_SUCCESS) {
xil_printf("Failed create BD ring\r\n");
return XST_FAILURE;
}
/*
* Like the RxBD space, we create a template and set all BDs to be the
* same as the template. The sender has to set up the BDs as needed.
*/
XAxiDma_BdClear(&BdTemplate);
Status = XAxiDma_BdRingClone(TxRingPtr, &BdTemplate);
if (Status != XST_SUCCESS) {
xil_printf("Failed clone BDs\r\n");
return XST_FAILURE;
}
/*
* Set the coalescing threshold, so only one transmit interrupt
* occurs for this example
*
* If you would like to have multiple interrupts to happen, change
* the COALESCING_COUNT to be a smaller value
*/
Status = XAxiDma_BdRingSetCoalesce(TxRingPtr, COALESCING_COUNT,
DELAY_TIMER_COUNT);
if (Status != XST_SUCCESS) {
xil_printf("Failed set coalescing"
" %d/%d\r\n",COALESCING_COUNT, DELAY_TIMER_COUNT);
return XST_FAILURE;
}
/* Enable all TX interrupts */
XAxiDma_BdRingIntEnable(TxRingPtr, XAXIDMA_IRQ_ALL_MASK);
/* Start the TX channel */
Status = XAxiDma_UpdateBdRingCDesc(TxRingPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed bd start %x\r\n", Status);
return XST_FAILURE;
}
Status = XAxiDma_StartBdRingHw(TxRingPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed bd start %x\r\n", Status);
return XST_FAILURE;
}
return XST_SUCCESS;
}
/*****************************************************************************/
/*
*
* This function non-blockingly transmits all packets through the DMA engine.
*
* @param AxiDmaInstPtr points to the DMA engine instance
*
* @return
* - XST_SUCCESS if the DMA accepts all the packets successfully,
* - XST_FAILURE if error occurs
*
* @note None.
*
******************************************************************************/
static int SendPacket(XAxiDma * AxiDmaInstPtr, u8 TDest, u8 TId, u8 Value)
{
XAxiDma_BdRing *TxRingPtr = XAxiDma_GetTxRing(AxiDmaInstPtr);
u8 *TxPacket;
XAxiDma_Bd *BdPtr, *BdCurPtr;
int Status;
int Index, Pkts;
u32 BufferAddr;
/*
* Each packet is limited to TxRingPtr->MaxTransferLen
*
* This will not be the case if hardware has store and forward built in
*/
if (MAX_PKT_LEN * NUMBER_OF_BDS_PER_PKT > TxRingPtr->MaxTransferLen) {
xil_printf("Invalid total per packet transfer length for the "
"packet %d/%d\r\n",
MAX_PKT_LEN * NUMBER_OF_BDS_PER_PKT,
TxRingPtr->MaxTransferLen);
return XST_INVALID_PARAM;
}
TxPacket = (u8 *) Packet;
for(Index = 0; Index < MAX_PKT_LEN * NUMBER_OF_BDS_TO_TRANSFER;
Index ++) {
TxPacket[Index] = Value;
Value = (Value + 1) & 0xFF;
}
/* Flush the SrcBuffer before the DMA transfer, in case the Data Cache
* is enabled
*/
Xil_DCacheFlushRange((u32)TxPacket, MAX_PKT_LEN *
NUMBER_OF_BDS_TO_TRANSFER);
Status = XAxiDma_BdRingAlloc(TxRingPtr,
NUMBER_OF_BDS_TO_TRANSFER,
&BdPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed bd alloc\r\n");
return XST_FAILURE;
}
BufferAddr = (u32) TxPacket;
BdCurPtr = BdPtr;
/*
* Set up the BD using the information of the packet to transmit
* Each transfer has NUMBER_OF_BDS_PER_PKT BDs
*/
for(Index = 0; Index < NUMBER_OF_PKTS_TO_TRANSFER; Index++) {
for(Pkts = 0; Pkts < NUMBER_OF_BDS_PER_PKT; Pkts++) {
u32 CrBits = 0;
Status = XAxiDma_BdSetBufAddr(BdCurPtr, BufferAddr);
if (Status != XST_SUCCESS) {
xil_printf("Tx set buffer addr %x on BD %x failed %d\r\n",
(unsigned int)BufferAddr,
(unsigned int)BdCurPtr, Status);
return XST_FAILURE;
}
Status = XAxiDma_BdSetLength(BdCurPtr, HSIZE,
TxRingPtr->MaxTransferLen);
if (Status != XST_SUCCESS) {
xil_printf("Tx set length %d on BD %x failed %d\r\n",
MAX_PKT_LEN, (unsigned int)BdCurPtr, Status);
return XST_FAILURE;
}
if (Pkts == 0) {
/* The first BD has SOF set
*/
CrBits |= XAXIDMA_BD_CTRL_TXSOF_MASK;
#if (XPAR_AXIDMA_0_SG_INCLUDE_STSCNTRL_STRM == 1)
/* The first BD has total transfer length set
* in the last APP word, this is for the
* loopback widget
*/
Status = XAxiDma_BdSetAppWord(BdCurPtr,
XAXIDMA_LAST_APPWORD,
MAX_PKT_LEN * NUMBER_OF_BDS_PER_PKT);
if (Status != XST_SUCCESS) {
xil_printf("Set app word failed with %d\r\n",
Status);
}
#endif
}
if(Pkts == (NUMBER_OF_BDS_PER_PKT - 1)) {
/* The last BD should have EOF and IOC set
*/
CrBits |= XAXIDMA_BD_CTRL_TXEOF_MASK;
}
XAxiDma_BdSetCtrl(BdCurPtr, CrBits);
XAxiDma_BdSetId(BdCurPtr, BufferAddr);
XAxiDma_BdSetTId(BdCurPtr, TId);
XAxiDma_BdSetTDest(BdCurPtr, TDest);
XAxiDma_BdSetTUser(BdCurPtr, TUSER);
XAxiDma_BdSetARCache(BdCurPtr, ARCACHE);
XAxiDma_BdSetARUser(BdCurPtr, ARUSER);
XAxiDma_BdSetVSize(BdCurPtr, VSIZE);
XAxiDma_BdSetStride(BdCurPtr, STRIDE);
BufferAddr += MAX_PKT_LEN;
BdCurPtr = XAxiDma_BdRingNext(TxRingPtr, BdCurPtr);
}
}
/* Give the BD to hardware */
Status = XAxiDma_BdRingToHw(TxRingPtr, NUMBER_OF_BDS_TO_TRANSFER,
BdPtr);
if (Status != XST_SUCCESS) {
xil_printf("Failed to hw, length %d\r\n",
(int)XAxiDma_BdGetLength(BdPtr,
TxRingPtr->MaxTransferLen));
return XST_FAILURE;
}
return XST_SUCCESS;
}