v_hscaler: Update tcl to include model parameters

Updated the tcl and mdd files to define model parameters.
Updated the code to use new parameters instead of hard-coded
values defined earlier

Signed-off-by: Rohit Consul <rohit.consul@xilinx.com>
This commit is contained in:
Rohit Consul 2015-06-04 05:49:46 +08:00 committed by Nava kishore Manne
parent 10caed69b1
commit 965a8ffb21
5 changed files with 135 additions and 80 deletions

View file

@ -10,14 +10,37 @@ proc generate {drv_handle} {
"NUM_INSTANCES" \
"DEVICE_ID" \
"C_S_AXI_CTRL_BASEADDR" \
"C_S_AXI_CTRL_HIGHADDR"
"C_S_AXI_CTRL_HIGHADDR" \
"SAMPLES_PER_CLOCK" \
"MAX_COLS" \
"MAX_ROWS" \
"MAX_DATA_WIDTH" \
"PHASE_SHIFT" \
"SCALE_MODE" \
"TAPS"
xdefine_config_file $drv_handle "xv_hscaler_g.c" "XV_hscaler" \
"DEVICE_ID" \
"C_S_AXI_CTRL_BASEADDR"
"C_S_AXI_CTRL_BASEADDR" \
"SAMPLES_PER_CLOCK" \
"MAX_COLS" \
"MAX_ROWS" \
"MAX_DATA_WIDTH" \
"PHASE_SHIFT" \
"SCALE_MODE" \
"TAPS"
xdefine_canonical_xpars $drv_handle "xparameters.h" "XV_hscaler" \
"DEVICE_ID" \
"C_S_AXI_CTRL_BASEADDR" \
"C_S_AXI_CTRL_HIGHADDR"
"C_S_AXI_CTRL_HIGHADDR" \
"SAMPLES_PER_CLOCK" \
"MAX_COLS" \
"MAX_ROWS" \
"MAX_DATA_WIDTH" \
"PHASE_SHIFT" \
"SCALE_MODE" \
"TAPS"
}

View file

@ -7,6 +7,7 @@
/***************************** Include Files *********************************/
#include "xv_hscaler.h"
#include "string.h"
/************************** Function Implementation *************************/
#ifndef __linux__
@ -14,6 +15,11 @@ int XV_hscaler_CfgInitialize(XV_hscaler *InstancePtr, XV_hscaler_Config *ConfigP
Xil_AssertNonvoid(InstancePtr != NULL);
Xil_AssertNonvoid(ConfigPtr != NULL);
/* Setup the instance */
(void)memset((void *)InstancePtr, 0, sizeof(XV_hscaler));
(void)memcpy((void *)&(InstancePtr->Config), (const void *)ConfigPtr,
sizeof(XV_hscaler_Config));
InstancePtr->Ctrl_BaseAddress = ConfigPtr->Ctrl_BaseAddress;
InstancePtr->IsReady = XIL_COMPONENT_IS_READY;

View file

@ -38,15 +38,31 @@ typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
#else
/**
* This typedef contains configuration information for the horizontal scaler
* core. Each core instance should have a configuration structure
* associated.
*/
typedef struct {
u16 DeviceId;
u32 Ctrl_BaseAddress;
u16 DeviceId; /**< Unique ID of device */
u32 Ctrl_BaseAddress; /**< The base address of the core instance. */
int PixPerClk; /**< Samples Per Clock supported by core instance */
u16 MaxWidth; /**< Maximum columns supported by core instance */
u16 MaxHeight; /**< Maximum rows supported by core instance */
int MaxDataWidth; /**< Maximum Data width of each channel */
u16 PhaseShift; /**< Max num of phases (2^PhaseShift) */
int ScalerType; /**< Scaling Algorithm Selected */
int NumTaps; /**< Number of taps */
} XV_hscaler_Config;
#endif
/**
* Driver instance data. An instance must be allocated for each core in use.
*/
typedef struct {
u32 Ctrl_BaseAddress;
u32 IsReady;
XV_hscaler_Config Config; /**< Hardware Configuration */
u32 Ctrl_BaseAddress; /**< The base address of the core instance. */
u32 IsReady; /**< Device is initialized and ready */
} XV_hscaler;
/***************** Macros (Inline Functions) Definitions *********************/

View file

@ -73,24 +73,21 @@ static float TempCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
static float WinCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
static float NormCoeffs[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
int HSC_SAMPLES_PER_CLOCK = 2;
int HSC_MAX_WIDTH = 4096;
int STEP_PRECISION_SHIFT = 16;
int HSC_PHASE_SHIFT = 6;
const int STEP_PRECISION_SHIFT = 16;
/************************** Function Prototypes ******************************/
static float hamming( int x, int taps);
static float sinc(float x);
static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
static void CalculatePhases(XV_hscaler *pHsc,
XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixelRate);
static void XV_HScalerGetCoeff(XV_hscaler *InstancePtr,
static void XV_HScalerGetCoeff(XV_hscaler *pHsc,
XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk);
static void XV_HScalerSetCoeff(XV_hscaler *InstancePtr,
u32 WidthOut);
static void XV_HScalerSetCoeff(XV_hscaler *pHsc,
XV_hscaler_l2 *pHscL2Data);
/*****************************************************************************/
@ -171,15 +168,14 @@ static float sinc(float x)
* @return None
*
******************************************************************************/
static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
static void CalculatePhases(XV_hscaler *pHsc,
XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixelRate)
{
int loopWidth;
loopWidth = ((WidthIn > WidthOut) ? WidthIn +(HSC_SAMPLES_PER_CLOCK-1) : WidthOut +(HSC_SAMPLES_PER_CLOCK-1))/HSC_SAMPLES_PER_CLOCK;
int x, s;
int x,s;
int offset = 0;
int xWritePos = 0;
int OutputWriteEn;
@ -189,15 +185,19 @@ static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
int xReadPos = 0;
int nrRds = 0;
int nrRdsClck = 0;
int MaxPhases = (1<<pHsc->Config.PhaseShift);
loopWidth = ((WidthIn > WidthOut) ? WidthIn + (pHsc->Config.PixPerClk-1)
: WidthOut +(pHsc->Config.PixPerClk-1))/pHsc->Config.PixPerClk;
arrayIdx = 0;
for (x=0; x<loopWidth; x++)
{
pHscL2Data->phasesH[x] = 0;
nrRdsClck = 0;
for (s=0; s<HSC_SAMPLES_PER_CLOCK; s++)
for (s=0; s<pHsc->Config.PixPerClk; s++)
{
PhaseH = (offset>>(STEP_PRECISION_SHIFT-HSC_PHASE_SHIFT)) & (XV_HSCALER_MAX_H_PHASES-1);//(HSC_PHASES-1);
PhaseH = (offset>>(STEP_PRECISION_SHIFT-pHsc->Config.PhaseShift)) & (MaxPhases-1);//(HSC_PHASES-1);
GetNewPix = 0;
OutputWriteEn = 0;
if ((offset >> STEP_PRECISION_SHIFT) != 0)
@ -217,21 +217,19 @@ static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
OutputWriteEn = 1;
xWritePos++;
}
//printf("x %5d, offset %5d, phase %5d, arrayIdx %5d, readpos %5d writepos %5d rden %3d wren %3d\n", (int)x*HSC_SAMPLES_PER_CLOCK+s, offset, (int)PhaseH, (int)arrayIdx, (int)xReadPos, xWritePos, GetNewPix, OutputWriteEn);
pHscL2Data->phasesH[x] = pHscL2Data->phasesH[x] | (PhaseH << (s*9));
pHscL2Data->phasesH[x] = pHscL2Data->phasesH[x] | (arrayIdx << (6 + (s*9)));
pHscL2Data->phasesH[x] = pHscL2Data->phasesH[x] | (OutputWriteEn << (8 + (s*9)));
if (GetNewPix) nrRdsClck++;
}
if (arrayIdx>=HSC_SAMPLES_PER_CLOCK) arrayIdx &= (HSC_SAMPLES_PER_CLOCK-1);
if (arrayIdx>=pHsc->Config.PixPerClk)
arrayIdx &= (pHsc->Config.PixPerClk-1);
//printf("%d nrRds per clock %d left hanging\n", nrRdsClck, nrRds);
nrRds += nrRdsClck;
if (nrRds>=HSC_SAMPLES_PER_CLOCK)
if (nrRds>=pHsc->Config.PixPerClk)
{
nrRds -= HSC_SAMPLES_PER_CLOCK;
//printf("getting %d new samples\n", HSC_SAMPLES_PER_CLOCK);
nrRds -= pHsc->Config.PixPerClk;
}
}
}
@ -247,30 +245,30 @@ static void CalculatePhases(XV_hscaler_l2 *pHscL2Data,
******************************************************************************/
void XV_HscalerLoadUsrCoeffients(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
const short HCoeff[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS])
u16 num_phases,
u16 num_taps,
const short *Coeff)
{
int i,j,k, pad, offset;
int num_phases = XV_HSCALER_MAX_H_PHASES;
int num_taps = pHscL2Data->EffectiveTaps;
int i,j, pad, offset;
/*
* Assert validates the input arguments
*/
Xil_AssertVoid(InstancePtr != NULL);
Xil_AssertVoid(pHscL2Data != NULL);
Xil_AssertVoid((pHscL2Data->EffectiveTaps > 0) &&
(pHscL2Data->EffectiveTaps <= XV_HSCALER_MAX_H_TAPS));
Xil_AssertVoid(num_taps <= InstancePtr->Config.NumTaps);
Xil_AssertVoid(num_phases <= (1<<InstancePtr->Config.PhaseShift));
//determine if coefficient needs padding (effective vs. max taps)
pad = XV_HSCALER_MAX_H_TAPS - num_taps;
pad = XV_HSCALER_MAX_H_TAPS - InstancePtr->Config.NumTaps;
offset = ((pad) ? (pad>>1) : 0);
//Load User defined coefficients into scaler coefficient table
for (i = 0; i < num_phases; i++)
{
for (k=0,j=offset; j<num_taps; ++j,++k)
for (j=0; j<num_taps; ++j)
{
pHscL2Data->coeff[i][j] = HCoeff[i][k];
pHscL2Data->coeff[i][j+offset] = Coeff[i*num_taps+j];
}
}
@ -290,6 +288,9 @@ void XV_HscalerLoadUsrCoeffients(XV_hscaler *InstancePtr,
}
}
}
/* Enable use of external coefficients */
pHscL2Data->UseExtCoeff = TRUE;
}
/*****************************************************************************/
@ -305,26 +306,19 @@ void XV_HscalerLoadUsrCoeffients(XV_hscaler *InstancePtr,
* @return None
*
******************************************************************************/
static void XV_HScalerGetCoeff(XV_hscaler *InstancePtr,
static void XV_HScalerGetCoeff(XV_hscaler *pHsc,
XV_hscaler_l2 *pHscL2Data,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk)
u32 WidthOut)
{
int num_phases = XV_HSCALER_MAX_H_PHASES;
int num_taps = pHscL2Data->EffectiveTaps;
int num_phases = (1<<pHsc->Config.PhaseShift);
int num_taps = pHsc->Config.NumTaps;
int center_tap = num_taps/2;
int i,j, pad, offset;
float x, fc;
float sum[XV_HSCALER_MAX_H_PHASES];
float cos_win[XV_HSCALER_MAX_H_TAPS];
/*
* Assert validates the input arguments
*/
Xil_AssertVoid((pHscL2Data->EffectiveTaps > 0) &&
(pHscL2Data->EffectiveTaps <= XV_HSCALER_MAX_H_TAPS));
if(WidthIn < WidthOut)
{
fc = (float)WidthIn/(float)WidthOut;
@ -393,10 +387,10 @@ static void XV_HScalerGetCoeff(XV_hscaler *InstancePtr,
for (i = 0; i < num_phases; i++)
{
for (j = offset; j < num_taps; j++)
for (j = 0; j < num_taps; j++)
{
NormCoeffs[i][j] = WinCoeffs[i][j]/sum[i];
pHscL2Data->coeff[i][j] = (short) ((NormCoeffs[i][j] * COEFF_QUANT) + 0.5);
pHscL2Data->coeff[i][j+offset] = (short) ((NormCoeffs[i][j] * COEFF_QUANT) + 0.5);
}
}
@ -435,27 +429,29 @@ static void XV_HScalerGetCoeff(XV_hscaler *InstancePtr,
* maintain the sw latency for driver version which would eventually use
* computed coefficients
******************************************************************************/
static void XV_HScalerSetCoeff(XV_hscaler *InstancePtr,
static void XV_HScalerSetCoeff(XV_hscaler *pHsc,
XV_hscaler_l2 *pHscL2Data)
{
int num_phases = XV_HSCALER_MAX_H_PHASES;
int num_taps = XV_HSCALER_MAX_H_TAPS/2;
int val,i,j;
int num_phases = 1<<pHsc->Config.PhaseShift;
int num_taps = pHsc->Config.NumTaps/2;
int val,i,j,offset,rdIndx;
u32 baseAddr;
baseAddr = XV_hscaler_Get_HwReg_hfltCoeff_BaseAddress(InstancePtr);
offset = (XV_HSCALER_MAX_H_TAPS - pHsc->Config.NumTaps)/2;
baseAddr = XV_hscaler_Get_HwReg_hfltCoeff_BaseAddress(pHsc);
for (i = 0; i < num_phases; i++)
{
for(j=0; j< num_taps; j++)
for(j=0; j < num_taps; j++)
{
val = (pHscL2Data->coeff[i][(j*2)+1] << 16) | (pHscL2Data->coeff[i][j*2] & XMASK_LOW_16BITS);
rdIndx = j*2+offset;
val = (pHscL2Data->coeff[i][rdIndx+1] << 16) | (pHscL2Data->coeff[i][rdIndx] & XMASK_LOW_16BITS);
Xil_Out32(baseAddr+((i*num_taps+j)*4), val);
}
}
//program phases
baseAddr = XV_hscaler_Get_HwReg_phasesH_V_BaseAddress(InstancePtr);
for (i = 0; i < (HSC_MAX_WIDTH/HSC_SAMPLES_PER_CLOCK); i++)
baseAddr = XV_hscaler_Get_HwReg_phasesH_V_BaseAddress(pHsc);
for (i = 0; i < (pHsc->Config.MaxWidth/pHsc->Config.PixPerClk); i++)
{
Xil_Out32(baseAddr+(i*4), pHscL2Data->phasesH[i]);
}
@ -480,7 +476,6 @@ void XV_HScalerSetup(XV_hscaler *InstancePtr,
u32 HeightIn,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk,
u32 cformat)
{
u32 PixelRate;
@ -493,19 +488,24 @@ void XV_HScalerSetup(XV_hscaler *InstancePtr,
PixelRate = (u32) ((float)((WidthIn * STEP_PRECISION) + (WidthOut/2))/(float)WidthOut);
/* Compute Phase for 1 line */
CalculatePhases(pHscL2Data, WidthIn, WidthOut, PixelRate);
if(pHscL2Data->ScalerType == XV_HSCALER_POLYPHASE)
if(InstancePtr->Config.ScalerType == XV_HSCALER_POLYPHASE)
{
/* Compute Phase for 1 line */
CalculatePhases(InstancePtr, pHscL2Data, WidthIn, WidthOut, PixelRate);
if(!pHscL2Data->UseExtCoeff) //No predefined coefficients
{
/* If user has not selected any filter set default */
if(pHscL2Data->FilterSel == 0)
{
XV_HScalerSetFilterType(pHscL2Data, XV_HFILT_LANCZOS);
}
/* Generate coefficients for horizontal scaling ratio */
XV_HScalerGetCoeff(InstancePtr,
pHscL2Data,
WidthIn,
WidthOut,
PixPerClk);
WidthOut);
}
/* Program generated coefficients into the IP register bank */
@ -535,7 +535,6 @@ void XV_HScalerDbgReportStatus(XV_hscaler *InstancePtr)
XV_hscaler *pHsc = InstancePtr;
u32 done, idle, ready, ctrl;
u32 widthin, widthout, heightin, pixrate, cformat;
u32 type = 3; //hard-coded to polyphase for now
u32 baseAddr, taps, phases;
int val,i,j;
@ -553,27 +552,26 @@ void XV_HScalerDbgReportStatus(XV_hscaler *InstancePtr)
heightin = XV_hscaler_Get_HwReg_Height(pHsc);
widthin = XV_hscaler_Get_HwReg_WidthIn(pHsc);
widthout = XV_hscaler_Get_HwReg_WidthOut(pHsc);
// type = XV_hscaler_Get_Hwreg_scaletype_v(pHsc);
cformat = XV_hscaler_Get_HwReg_ColorMode(pHsc);
pixrate = XV_hscaler_Get_HwReg_PixelRate(pHsc);
taps = XV_HSCALER_MAX_H_TAPS/2;
phases = XV_HSCALER_MAX_H_PHASES;
taps = pHsc->Config.NumTaps/2;
phases = (1<<pHsc->Config.PhaseShift);
xil_printf("IsDone: %d\r\n", done);
xil_printf("IsIdle: %d\r\n", idle);
xil_printf("IsReady: %d\r\n", ready);
xil_printf("Ctrl: 0x%x\r\n\r\n", ctrl);
xil_printf("Scaler Type: %d\r\n",pHsc->Config.ScalerType);
xil_printf("Input Height: %d\r\n",heightin);
xil_printf("Input Width: %d\r\n",widthin);
xil_printf("Output Width: %d\r\n",widthout);
// xil_printf("Scaler Type: %d\r\n",type);
xil_printf("Color Format: %d\r\n",cformat);
xil_printf("Pixel Rate: %d\r\n",pixrate);
xil_printf("Num Phases: %d\r\n",phases);
xil_printf("Num Taps: %d\r\n",taps*2);
if(type == 3)
if(pHsc->Config.ScalerType == XV_HSCALER_POLYPHASE)
{
short lsb, msb;

View file

@ -108,7 +108,6 @@
extern "C" {
#endif
#include "xvidc.h"
#include "xv_hscaler.h"
/************************** Constant Definitions *****************************/
@ -122,8 +121,9 @@ extern "C" {
* accessible via instance pointer
*
*/
#define XV_HSCALER_MAX_H_TAPS (6)
#define XV_HSCALER_MAX_H_TAPS (10)
#define XV_HSCALER_MAX_H_PHASES (64)
#define XV_HSCALER_MAX_LINE_WIDTH (4096)
/**************************** Type Definitions *******************************/
/**
@ -152,28 +152,40 @@ typedef enum
*/
typedef struct
{
u8 EffectiveTaps;
u8 UseExtCoeff;
XV_HFILTER_ID FilterSel;
XV_HSCALER_TYPE ScalerType;
u8 Gain;
short coeff[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS];
u32 phasesH[4096];
u32 phasesH[XV_HSCALER_MAX_LINE_WIDTH];
}XV_hscaler_l2;
/************************** Macros Definitions *******************************/
/*****************************************************************************/
/**
* This macro selects the filter used for generating coefficients.
* Applicable only for Ployphase Scaler Type
*
* @param pHscL2Data is pointer to the H Scaler Layer 2 structure instance
* @param value is the filter type
*
* @return None
*
*****************************************************************************/
#define XV_HScalerSetFilterType(pHscL2Data, value) \
((pHscL2Data)->FilterSel = value)
/************************** Function Prototypes ******************************/
void XV_HScalerStart(XV_hscaler *InstancePtr);
void XV_HScalerStop(XV_hscaler *InstancePtr);
void XV_HscalerLoadUsrCoeffients(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
const short HCoeff[XV_HSCALER_MAX_H_PHASES][XV_HSCALER_MAX_H_TAPS]);
u16 num_phases,
u16 num_taps,
const short *Coeff);
void XV_HScalerSetup(XV_hscaler *InstancePtr,
XV_hscaler_l2 *pHscL2Data,
u32 HeightIn,
u32 WidthIn,
u32 WidthOut,
u32 PixPerClk,
u32 cformat);
void XV_HScalerDbgReportStatus(XV_hscaler *InstancePtr);