embeddedsw/XilinxProcessorIPLib/drivers/qspips/examples/xqspips_g128_flash_example.c
Jagannadha Sutradharudu Teki 2c8f92039d embeddesw: Add initial code support
Added initial support Xilinx Embedded Software.

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
2014-06-24 16:45:01 +05:30

1525 lines
45 KiB
C
Executable file

/******************************************************************************
*
* Copyright (C) 2013 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xqspips_g128_flash_example.c
*
*
* This file contains a design example using the QSPI driver (XQspiPs)
* with a serial Flash device greater than 128Mb. The example writes to flash
* and reads it back in I/O mode. This examples performs
* some transfers in Auto mode and Manual start mode, to illustrate the modes
* available. It is recommended to use Manual CS + Auto start for
* best performance.
* This example illustrates single, parallel and stacked modes.
* Both the flash devices have to be of the same make and size.
* The hardware which this example runs on, must have a serial Flash (Micron
* N25Q or Spansion S25FL) for it to run. This example has been
* tested with the Micron Serial Flash (N25Q256, N25Q512 & N25Q00AA) and
* Spansion (S25FL256 & S25FL512)
*
* @note
*
* None.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- --- -------- -----------------------------------------------
* 2.02a hk 05/07/13 First release
*
*</pre>
*
******************************************************************************/
/***************************** Include Files *********************************/
#include "xparameters.h" /* SDK generated parameters */
#include "xqspips.h" /* QSPI device driver */
#include "xil_printf.h"
/************************** Constant Definitions *****************************/
/*
* The following constants define the commands which may be sent to the Flash
* device.
*/
#define WRITE_STATUS_CMD 0x01
#define WRITE_CMD 0x02
#define READ_CMD 0x03
#define WRITE_DISABLE_CMD 0x04
#define READ_STATUS_CMD 0x05
#define WRITE_ENABLE_CMD 0x06
#define FAST_READ_CMD 0x0B
#define DUAL_READ_CMD 0x3B
#define QUAD_READ_CMD 0x6B
#define BULK_ERASE_CMD 0xC7
#define SEC_ERASE_CMD 0xD8
#define READ_ID 0x9F
#define READ_CONFIG_CMD 0x35
#define WRITE_CONFIG_CMD 0x01
#define BANK_REG_RD 0x16
#define BANK_REG_WR 0x17
/* Bank register is called Extended Address Register in Micron */
#define EXTADD_REG_RD 0xC8
#define EXTADD_REG_WR 0xC5
#define DIE_ERASE_CMD 0xC4
#define READ_FLAG_STATUS_CMD 0x70
/*
* The following constants define the offsets within a FlashBuffer data
* type for each kind of data. Note that the read data offset is not the
* same as the write data because the QSPI driver is designed to allow full
* duplex transfers such that the number of bytes received is the number
* sent and received.
*/
#define COMMAND_OFFSET 0 /* Flash instruction */
#define ADDRESS_1_OFFSET 1 /* MSB byte of address to read or write */
#define ADDRESS_2_OFFSET 2 /* Middle byte of address to read or write */
#define ADDRESS_3_OFFSET 3 /* LSB byte of address to read or write */
#define DATA_OFFSET 4 /* Start of Data for Read/Write */
#define DUMMY_OFFSET 4 /* Dummy byte offset for fast, dual and quad
reads */
#define DUMMY_SIZE 1 /* Number of dummy bytes for fast, dual and
quad reads */
#define RD_ID_SIZE 4 /* Read ID command + 3 bytes ID response */
#define BULK_ERASE_SIZE 1 /* Bulk Erase command size */
#define SEC_ERASE_SIZE 4 /* Sector Erase command + Sector address */
#define BANK_SEL_SIZE 2 /* BRWR or EARWR command + 1 byte bank value */
#define RD_CFG_SIZE 2 /* 1 byte Configuration register + RD CFG command*/
#define WR_CFG_SIZE 3 /* WRR command + 1 byte each Status and Config Reg*/
#define DIE_ERASE_SIZE 4 /* Die Erase command + Die address */
/*
* The following constants specify the extra bytes which are sent to the
* Flash on the QSPI interface, that are not data, but control information
* which includes the command and address
*/
#define OVERHEAD_SIZE 4
/*
* Base address of Flash1
*/
#define FLASH1BASE 0x0000000
/*
* Sixteen MB
*/
#define SIXTEENMB 0x1000000
/*
* Mask for quad enable bit in Flash configuration register
*/
#define FLASH_QUAD_EN_MASK 0x02
#define FLASH_SRWD_MASK 0x80
/*
* Bank mask
*/
#define BANKMASK 0xF000000
/*
* Identification of Flash
* Micron:
* Byte 0 is Manufacturer ID;
* Byte 1 is first byte of Device ID - 0xBB or 0xBA
* Byte 2 is second byte of Device ID describes flash size:
* 128Mbit : 0x18; 256Mbit : 0x19; 512Mbit : 0x20
* Spansion:
* Byte 0 is Manufacturer ID;
* Byte 1 is Device ID - Memory Interface type - 0x20 or 0x02
* Byte 2 is second byte of Device ID describes flash size:
* 128Mbit : 0x18; 256Mbit : 0x19; 512Mbit : 0x20
*/
#define MICRON_ID_BYTE0 0x20
#define MICRON_ID_BYTE2_128 0x18
#define MICRON_ID_BYTE2_256 0x19
#define MICRON_ID_BYTE2_512 0x20
#define MICRON_ID_BYTE2_1G 0x21
#define SPANSION_ID_BYTE0 0x01
#define SPANSION_ID_BYTE2_128 0x18
#define SPANSION_ID_BYTE2_256 0x19
#define SPANSION_ID_BYTE2_512 0x20
#define WINBOND_ID_BYTE0 0xEF
#define WINBOND_ID_BYTE2_128 0x18
/*
* The index for Flash config table
*/
/* Spansion*/
#define SPANSION_INDEX_START 0
#define FLASH_CFG_TBL_SINGLE_128_SP SPANSION_INDEX_START
#define FLASH_CFG_TBL_STACKED_128_SP (SPANSION_INDEX_START + 1)
#define FLASH_CFG_TBL_PARALLEL_128_SP (SPANSION_INDEX_START + 2)
#define FLASH_CFG_TBL_SINGLE_256_SP (SPANSION_INDEX_START + 3)
#define FLASH_CFG_TBL_STACKED_256_SP (SPANSION_INDEX_START + 4)
#define FLASH_CFG_TBL_PARALLEL_256_SP (SPANSION_INDEX_START + 5)
#define FLASH_CFG_TBL_SINGLE_512_SP (SPANSION_INDEX_START + 6)
#define FLASH_CFG_TBL_STACKED_512_SP (SPANSION_INDEX_START + 7)
#define FLASH_CFG_TBL_PARALLEL_512_SP (SPANSION_INDEX_START + 8)
/* Micron */
#define MICRON_INDEX_START (FLASH_CFG_TBL_PARALLEL_512_SP + 1)
#define FLASH_CFG_TBL_SINGLE_128_MC MICRON_INDEX_START
#define FLASH_CFG_TBL_STACKED_128_MC (MICRON_INDEX_START + 1)
#define FLASH_CFG_TBL_PARALLEL_128_MC (MICRON_INDEX_START + 2)
#define FLASH_CFG_TBL_SINGLE_256_MC (MICRON_INDEX_START + 3)
#define FLASH_CFG_TBL_STACKED_256_MC (MICRON_INDEX_START + 4)
#define FLASH_CFG_TBL_PARALLEL_256_MC (MICRON_INDEX_START + 5)
#define FLASH_CFG_TBL_SINGLE_512_MC (MICRON_INDEX_START + 6)
#define FLASH_CFG_TBL_STACKED_512_MC (MICRON_INDEX_START + 7)
#define FLASH_CFG_TBL_PARALLEL_512_MC (MICRON_INDEX_START + 8)
#define FLASH_CFG_TBL_SINGLE_1GB_MC (MICRON_INDEX_START + 9)
#define FLASH_CFG_TBL_STACKED_1GB_MC (MICRON_INDEX_START + 10)
#define FLASH_CFG_TBL_PARALLEL_1GB_MC (MICRON_INDEX_START + 11)
/* Winbond */
#define WINBOND_INDEX_START (FLASH_CFG_TBL_PARALLEL_1GB_MC + 1)
#define FLASH_CFG_TBL_SINGLE_128_WB WINBOND_INDEX_START
#define FLASH_CFG_TBL_STACKED_128_WB (WINBOND_INDEX_START + 1)
#define FLASH_CFG_TBL_PARALLEL_128_WB (WINBOND_INDEX_START + 2)
/*
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are defined here such that a user can easily
* change all the needed parameters in one place.
*/
#define QSPI_DEVICE_ID XPAR_XQSPIPS_0_DEVICE_ID
/*
* The following defines are for dual flash stacked mode interface.
*/
#define LQSPI_CR_FAST_QUAD_READ 0x0000006B /* Fast Quad Read output */
#define LQSPI_CR_1_DUMMY_BYTE 0x00000100 /* 1 Dummy Byte between
address and return data */
#define DUAL_STACK_CONFIG_WRITE (XQSPIPS_LQSPI_CR_TWO_MEM_MASK | \
LQSPI_CR_1_DUMMY_BYTE | \
LQSPI_CR_FAST_QUAD_READ)
#define DUAL_QSPI_CONFIG_WRITE (XQSPIPS_LQSPI_CR_TWO_MEM_MASK | \
XQSPIPS_LQSPI_CR_SEP_BUS_MASK | \
LQSPI_CR_1_DUMMY_BYTE | \
LQSPI_CR_FAST_QUAD_READ)
/*
* Number of flash pages to be written.
*/
#define PAGE_COUNT 32
/*
* Max page size to initialize write and read buffer
*/
#define MAX_PAGE_SIZE 1024
/*
* Flash address to which data is to be written.
*/
#define TEST_ADDRESS 0x000000
#define UNIQUE_VALUE 0x06
/**************************** Type Definitions *******************************/
typedef struct{
u32 SectSize; /* Individual sector size or
* combined sector size in case of parallel config*/
u32 NumSect; /* Total no. of sectors in one/two flash devices */
u32 PageSize; /* Individual page size or
* combined page size in case of parallel config*/
u32 NumPage; /* Total no. of pages in one/two flash devices */
u32 FlashDeviceSize; /* This is the size of one flash device
* NOT the combination of both devices, if present
*/
u8 ManufacturerID; /* Manufacturer ID - used to identify make */
u8 DeviceIDMemSize; /* Byte of device ID indicating the memory size */
u32 SectMask; /* Mask to get sector start address */
u8 NumDie; /* No. of die forming a single flash */
}FlashInfo;
/***************** Macros (Inline Functions) Definitions *********************/
/************************** Function Prototypes ******************************/
int QspiG128FlashExample(XQspiPs *QspiInstancePtr, u16 QspiDeviceId);
void FlashErase(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 *WriteBfrPtr);
void FlashWrite(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command,
u8 *WriteBfrPtr);
int FlashReadID(XQspiPs *QspiPtr, u8 *WriteBfrPtr, u8 *ReadBfrPtr);
void FlashRead(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command,
u8 *WriteBfrPtr, u8 *ReadBfrPtr);
int SendBankSelect(XQspiPs *QspiPtr, u8 *WriteBfrPtr, u32 BankSel);
void BulkErase(XQspiPs *QspiPtr, u8 *WriteBfrPtr);
void DieErase(XQspiPs *QspiPtr, u8 *WriteBfrPtr);
u32 GetRealAddr(XQspiPs *QspiPtr, u32 Address);
/************************** Variable Definitions *****************************/
FlashInfo Flash_Config_Table[24] = {
/* Spansion */
{0x10000, 0x100, 256, 0x10000, 0x1000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_128, 0xFFFF0000, 1},
{0x10000, 0x200, 256, 0x20000, 0x1000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_128, 0xFFFF0000, 1},
{0x20000, 0x100, 512, 0x10000, 0x1000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_128, 0xFFFE0000, 1},
{0x10000, 0x200, 256, 0x20000, 0x2000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_256, 0xFFFF0000, 1},
{0x10000, 0x400, 256, 0x40000, 0x2000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_256, 0xFFFF0000, 1},
{0x20000, 0x200, 512, 0x20000, 0x2000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_256, 0xFFFE0000, 1},
{0x40000, 0x100, 512, 0x20000, 0x4000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_512, 0xFFFC0000, 1},
{0x40000, 0x200, 512, 0x40000, 0x4000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_512, 0xFFFC0000, 1},
{0x80000, 0x100, 1024, 0x20000, 0x4000000,
SPANSION_ID_BYTE0, SPANSION_ID_BYTE2_512, 0xFFF80000, 1},
/* Spansion 1Gbit is handled as 512Mbit stacked */
/* Micron */
{0x10000, 0x100, 256, 0x10000, 0x1000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_128, 0xFFFF0000, 1},
{0x10000, 0x200, 256, 0x20000, 0x1000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_128, 0xFFFF0000, 1},
{0x20000, 0x100, 512, 0x10000, 0x1000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_128, 0xFFFE0000, 1},
{0x10000, 0x200, 256, 0x20000, 0x2000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_256, 0xFFFF0000, 1},
{0x10000, 0x400, 256, 0x40000, 0x2000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_256, 0xFFFF0000, 1},
{0x20000, 0x200, 512, 0x20000, 0x2000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_256, 0xFFFE0000, 1},
{0x10000, 0x400, 256, 0x40000, 0x4000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_512, 0xFFFF0000, 2},
{0x10000, 0x800, 256, 0x80000, 0x4000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_512, 0xFFFF0000, 2},
{0x20000, 0x400, 512, 0x40000, 0x4000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_512, 0xFFFE0000, 2},
{0x10000, 0x800, 256, 0x80000, 0x8000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_1G, 0xFFFF0000, 4},
{0x10000, 0x1000, 256, 0x100000, 0x8000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_1G, 0xFFFF0000, 4},
{0x20000, 0x800, 512, 0x80000, 0x8000000,
MICRON_ID_BYTE0, MICRON_ID_BYTE2_1G, 0xFFFE0000, 4},
/* Winbond */
{0x10000, 0x100, 256, 0x10000, 0x1000000,
WINBOND_ID_BYTE0, WINBOND_ID_BYTE2_128, 0xFFFF0000, 1},
{0x10000, 0x200, 256, 0x20000, 0x1000000,
WINBOND_ID_BYTE0, WINBOND_ID_BYTE2_128, 0xFFFF0000, 1},
{0x20000, 0x100, 512, 0x10000, 0x1000000,
WINBOND_ID_BYTE0, WINBOND_ID_BYTE2_128, 0xFFFE0000, 1}
};
u32 FlashMake;
u32 FCTIndex; /* Flash configuration table index */
/*
* The instances to support the device drivers are global such that they
* are initialized to zero each time the program runs. They could be local
* but should at least be static so they are zeroed.
*/
static XQspiPs QspiInstance;
/*
* The following variable allows a test value to be added to the values that
* are written to the Flash such that unique values can be generated to
* guarantee the writes to the Flash were successful
*/
int Test = 1;
/*
* The following variables are used to read and write to the flash and they
* are global to avoid having large buffers on the stack
* The buffer size accounts for maximum page size and maximum banks -
* for each bank separate read will be performed leading to that many
* (overhead+dummy) bytes
*/
u8 ReadBuffer[(PAGE_COUNT * MAX_PAGE_SIZE) + (DATA_OFFSET + DUMMY_SIZE)*8];
u8 WriteBuffer[(PAGE_COUNT * MAX_PAGE_SIZE) + DATA_OFFSET];
/*
* The following constants specify the max amount of data and the size of the
* the buffer required to hold the data and overhead to transfer the data to
* and from the Flash. Initialized to single flash page size.
*/
u32 MaxData = PAGE_COUNT*256;
/*****************************************************************************/
/**
*
* Main function to call the QSPI Flash example.
*
* @param None
*
* @return XST_SUCCESS if successful, otherwise XST_FAILURE.
*
* @note None
*
******************************************************************************/
int main(void)
{
int Status;
xil_printf("QSPI Greater than 128Mb Flash Example Test \r\n");
/*
* Run the Qspi Interrupt example.
*/
Status = QspiG128FlashExample(&QspiInstance, QSPI_DEVICE_ID);
if (Status != XST_SUCCESS) {
xil_printf("QSPI Greater than 128Mb Flash Example Test Failed\r\n");
return XST_FAILURE;
}
xil_printf("Successfully ran QSPI Greater than 128Mb Flash Ex Test\r\n");
return XST_SUCCESS;
}
/*****************************************************************************
*
* The purpose of this function is to illustrate how to use the XQspiPs
* device driver in single, parallel and stacked modes using
* flash devices greater than 128Mb.
* This function reads and writes data in I/O mode.
*
* @param None.
*
* @return XST_SUCCESS if successful, else XST_FAILURE.
*
* @note None.
*
*****************************************************************************/
int QspiG128FlashExample(XQspiPs *QspiInstancePtr, u16 QspiDeviceId)
{
int Status;
u8 UniqueValue;
int Count;
int Page;
XQspiPs_Config *QspiConfig;
/*
* Initialize the QSPI driver so that it's ready to use
*/
QspiConfig = XQspiPs_LookupConfig(QspiDeviceId);
if (NULL == QspiConfig) {
return XST_FAILURE;
}
Status = XQspiPs_CfgInitialize(QspiInstancePtr, QspiConfig,
QspiConfig->BaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Perform a self-test to check hardware build
*/
Status = XQspiPs_SelfTest(QspiInstancePtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Set the pre-scaler for QSPI clock
*/
XQspiPs_SetClkPrescaler(QspiInstancePtr, XQSPIPS_CLK_PRESCALE_8);
/*
* Set Manual Start and Manual Chip select options and drive the
* HOLD_B high.
*/
XQspiPs_SetOptions(QspiInstancePtr, XQSPIPS_FORCE_SSELECT_OPTION |
XQSPIPS_MANUAL_START_OPTION |
XQSPIPS_HOLD_B_DRIVE_OPTION);
if(QspiConfig->ConnectionMode == XQSPIPS_CONNECTION_MODE_STACKED) {
/*
* Enable two flash memories, Shared bus (NOT separate bus),
* L_PAGE selected by default
*/
XQspiPs_SetLqspiConfigReg(QspiInstancePtr, DUAL_STACK_CONFIG_WRITE);
}
if(QspiConfig->ConnectionMode == XQSPIPS_CONNECTION_MODE_PARALLEL) {
/*
* Enable two flash memories on separate buses
*/
XQspiPs_SetLqspiConfigReg(QspiInstancePtr, DUAL_QSPI_CONFIG_WRITE);
}
/*
* Assert the Flash chip select.
*/
XQspiPs_SetSlaveSelect(QspiInstancePtr);
/*
* Read flash ID and obtain all flash related information
* It is important to call the read id function before
* performing proceeding to any operation, including
* preparing the WriteBuffer
*/
FlashReadID(QspiInstancePtr, WriteBuffer, ReadBuffer);
/*
* Initialize MaxData according to page size.
*/
MaxData = PAGE_COUNT * (Flash_Config_Table[FCTIndex].PageSize);
/*
* Initialize the write buffer for a pattern to write to the Flash
* and the read buffer to zero so it can be verified after the read, the
* test value that is added to the unique value allows the value to be
* changed in a debug environment to guarantee
*/
for (UniqueValue = UNIQUE_VALUE, Count = 0;
Count < Flash_Config_Table[FCTIndex].PageSize;
Count++, UniqueValue++) {
WriteBuffer[DATA_OFFSET + Count] = (u8)(UniqueValue + Test);
}
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
/*
* Erase the flash.
*/
FlashErase(QspiInstancePtr, TEST_ADDRESS, MaxData, WriteBuffer);
/*
* Write the data in the write buffer to the serial Flash a page at a
* time, starting from TEST_ADDRESS
*/
for (Page = 0; Page < PAGE_COUNT; Page++) {
FlashWrite(QspiInstancePtr,
(Page * Flash_Config_Table[FCTIndex].PageSize) + TEST_ADDRESS,
Flash_Config_Table[FCTIndex].PageSize, WRITE_CMD, WriteBuffer);
}
/*
* I/O Read - for any flash size
*/
FlashRead(QspiInstancePtr, TEST_ADDRESS, MaxData, QUAD_READ_CMD,
WriteBuffer, ReadBuffer);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MaxData;
Count++, UniqueValue++) {
if (ReadBuffer[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Initialize the write buffer for a pattern to write to the Flash
* and the read buffer to zero so it can be verified after the read, the
* test value that is added to the unique value allows the value to be
* changed in a debug environment to guarantee
*/
for (UniqueValue = UNIQUE_VALUE, Count = 0;
Count < Flash_Config_Table[FCTIndex].PageSize;
Count++, UniqueValue++) {
WriteBuffer[DATA_OFFSET + Count] = (u8)(UniqueValue + Test);
}
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
/*
* Set Auto Start and Manual Chip select options and drive the
* HOLD_B high.
*/
XQspiPs_SetOptions(QspiInstancePtr, XQSPIPS_FORCE_SSELECT_OPTION |
XQSPIPS_HOLD_B_DRIVE_OPTION);
/*
* Erase the flash.
*/
FlashErase(QspiInstancePtr, TEST_ADDRESS, MaxData, WriteBuffer);
/*
* Write the data in the write buffer to the serial Flash a page at a
* time, starting from TEST_ADDRESS
*/
for (Page = 0; Page < PAGE_COUNT; Page++) {
FlashWrite(QspiInstancePtr,
(Page * Flash_Config_Table[FCTIndex].PageSize) + TEST_ADDRESS,
Flash_Config_Table[FCTIndex].PageSize, WRITE_CMD, WriteBuffer);
}
/*
* I/O Read - for any flash size
*/
FlashRead(QspiInstancePtr, TEST_ADDRESS, MaxData, QUAD_READ_CMD,
WriteBuffer, ReadBuffer);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MaxData;
Count++, UniqueValue++) {
if (ReadBuffer[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
return XST_SUCCESS;
}
/******************************************************************************
*
*
* This function writes to the serial Flash connected to the QSPI interface.
* All the data put into the buffer must be in the same page of the device with
* page boundaries being on 256 byte boundaries.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address contains the address to write data to in the Flash.
* @param ByteCount contains the number of bytes to write.
* @param Command is the command used to write data to the flash. QSPI
* device supports only Page Program command to write data to the
* flash.
* @param Pointer to the write buffer (which is to be transmitted)
*
* @return None.
*
* @note None.
*
******************************************************************************/
void FlashWrite(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command,
u8 *WriteBfrPtr)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
u8 ReadStatusCmd[] = { READ_STATUS_CMD, 0 }; /* Must send 2 bytes */
u8 FlashStatus[2];
u32 RealAddr;
u32 BankSel;
u8 ReadFlagSRCmd[] = {READ_FLAG_STATUS_CMD, 0};
u8 FlagStatus[2];
/*
* Translate address based on type of connection
* If stacked assert the slave select based on address
*/
RealAddr = GetRealAddr(QspiPtr, Address);
/*
* Bank Select
*/
if(Flash_Config_Table[FCTIndex].FlashDeviceSize > SIXTEENMB) {
/*
* Calculate bank
*/
BankSel = RealAddr/SIXTEENMB;
/*
* Select bank
*/
SendBankSelect(QspiPtr, WriteBfrPtr, BankSel);
}
/*
* Send the write enable command to the Flash so that it can be
* written to, this needs to be sent as a separate transfer before
* the write
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the write command with the specified address and data for the
* Flash
*/
/*
* This will ensure a 3B address is transferred even when address
* is greater than 128Mb.
*/
WriteBfrPtr[COMMAND_OFFSET] = Command;
WriteBfrPtr[ADDRESS_1_OFFSET] = (u8)((RealAddr & 0xFF0000) >> 16);
WriteBfrPtr[ADDRESS_2_OFFSET] = (u8)((RealAddr & 0xFF00) >> 8);
WriteBfrPtr[ADDRESS_3_OFFSET] = (u8)(RealAddr & 0xFF);
/*
* Send the write command, address, and data to the Flash to be
* written, no receive buffer is specified since there is nothing to
* receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, NULL,
ByteCount + OVERHEAD_SIZE);
if((Flash_Config_Table[FCTIndex].NumDie > 1) &&
(FlashMake == MICRON_ID_BYTE0)) {
XQspiPs_PolledTransfer(QspiPtr, ReadFlagSRCmd, FlagStatus,
sizeof(ReadFlagSRCmd));
}
/*
* Wait for the write command to the Flash to be completed, it takes
* some time for the data to be written
*/
while (1) {
/*
* Poll the status register of the Flash to determine when it
* completes, by sending a read status command and receiving the
* status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadStatusCmd, FlashStatus,
sizeof(ReadStatusCmd));
/*
* If the status indicates the write is done, then stop waiting,
* if a value of 0xFF in the status byte is read from the
* device and this loop never exits, the device slave select is
* possibly incorrect such that the device status is not being
* read
*/
if ((FlashStatus[1] & 0x01) == 0) {
break;
}
}
if((Flash_Config_Table[FCTIndex].NumDie > 1) &&
(FlashMake == MICRON_ID_BYTE0)) {
XQspiPs_PolledTransfer(QspiPtr, ReadFlagSRCmd, FlagStatus,
sizeof(ReadFlagSRCmd));
}
}
/******************************************************************************
*
*
* This function erases the sectors in the serial Flash connected to the
* QSPI interface.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address contains the address of the first sector which needs to
* be erased.
* @param ByteCount contains the total size to be erased.
* @param Pointer to the write buffer (which is to be transmitted)
*
* @return None.
*
* @note None.
*
******************************************************************************/
void FlashErase(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 *WriteBfrPtr)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
u8 ReadStatusCmd[] = { READ_STATUS_CMD, 0 }; /* Must send 2 bytes */
u8 FlashStatus[2];
int Sector;
u32 RealAddr;
u32 LqspiCr;
u32 NumSect;
u32 BankSel;
u8 BankInitFlag = 1;
u8 ReadFlagSRCmd[] = { READ_FLAG_STATUS_CMD, 0 };
u8 FlagStatus[2];
/*
* If erase size is same as the total size of the flash, use bulk erase
* command or die erase command multiple times as required
*/
if (ByteCount == ((Flash_Config_Table[FCTIndex]).NumSect *
(Flash_Config_Table[FCTIndex]).SectSize) ) {
if(QspiPtr->Config.ConnectionMode == XQSPIPS_CONNECTION_MODE_STACKED){
/*
* Get the current LQSPI configuration register value
*/
LqspiCr = XQspiPs_GetLqspiConfigReg(QspiPtr);
/*
* Set selection to L_PAGE
*/
XQspiPs_SetLqspiConfigReg(QspiPtr,
LqspiCr & (~XQSPIPS_LQSPI_CR_U_PAGE_MASK));
/*
* Assert the Flash chip select.
*/
XQspiPs_SetSlaveSelect(QspiPtr);
}
if(Flash_Config_Table[FCTIndex].NumDie == 1) {
/*
* Call Bulk erase
*/
BulkErase(QspiPtr, WriteBfrPtr);
}
if(Flash_Config_Table[FCTIndex].NumDie > 1) {
/*
* Call Die erase
*/
DieErase(QspiPtr, WriteBfrPtr);
}
/*
* If stacked mode, bulk erase second flash
*/
if(QspiPtr->Config.ConnectionMode == XQSPIPS_CONNECTION_MODE_STACKED){
/*
* Get the current LQSPI configuration register value
*/
LqspiCr = XQspiPs_GetLqspiConfigReg(QspiPtr);
/*
* Set selection to U_PAGE
*/
XQspiPs_SetLqspiConfigReg(QspiPtr,
LqspiCr | XQSPIPS_LQSPI_CR_U_PAGE_MASK);
/*
* Assert the Flash chip select.
*/
XQspiPs_SetSlaveSelect(QspiPtr);
if(Flash_Config_Table[FCTIndex].NumDie == 1) {
/*
* Call Bulk erase
*/
BulkErase(QspiPtr, WriteBfrPtr);
}
if(Flash_Config_Table[FCTIndex].NumDie > 1) {
/*
* Call Die erase
*/
DieErase(QspiPtr, WriteBfrPtr);
}
}
return;
}
/*
* If the erase size is less than the total size of the flash, use
* sector erase command
*/
/*
* Calculate no. of sectors to erase based on byte count
*/
NumSect = ByteCount/(Flash_Config_Table[FCTIndex].SectSize) + 1;
/*
* If ByteCount to k sectors,
* but the address range spans from N to N+k+1 sectors, then
* increment no. of sectors to be erased
*/
if( ((Address + ByteCount) & Flash_Config_Table[FCTIndex].SectMask) ==
((Address + (NumSect * Flash_Config_Table[FCTIndex].SectSize)) &
Flash_Config_Table[FCTIndex].SectMask) ) {
NumSect++;
}
for (Sector = 0; Sector < NumSect; Sector++) {
/*
* Translate address based on type of connection
* If stacked assert the slave select based on address
*/
RealAddr = GetRealAddr(QspiPtr, Address);
/*
* Initial bank selection
*/
if((BankInitFlag) &&
(Flash_Config_Table[FCTIndex].FlashDeviceSize > SIXTEENMB)) {
/*
* Reset initial bank select flag
*/
BankInitFlag = 0;
/*
* Calculate initial bank
*/
BankSel = RealAddr/SIXTEENMB;
/*
* Select bank
*/
SendBankSelect(QspiPtr, WriteBfrPtr, BankSel);
}
/*
* Check bank and send bank select if new bank
*/
if((BankSel != RealAddr/SIXTEENMB) &&
(Flash_Config_Table[FCTIndex].FlashDeviceSize > SIXTEENMB)) {
/*
* Calculate initial bank
*/
BankSel = RealAddr/SIXTEENMB;
/*
* Select bank
*/
SendBankSelect(QspiPtr, WriteBfrPtr, BankSel);
}
/*
* Send the write enable command to the SEEPOM so that it can be
* written to, this needs to be sent as a separate transfer
* before the write
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the write command with the specified address and data
* for the Flash
*/
/*
* This ensures 3B address is sent to flash even with address
* greater than 128Mb.
*/
WriteBfrPtr[COMMAND_OFFSET] = SEC_ERASE_CMD;
WriteBfrPtr[ADDRESS_1_OFFSET] = (u8)(RealAddr >> 16);
WriteBfrPtr[ADDRESS_2_OFFSET] = (u8)(RealAddr >> 8);
WriteBfrPtr[ADDRESS_3_OFFSET] = (u8)(RealAddr & 0xFF);
/*
* Send the sector erase command and address; no receive buffer
* is specified since there is nothing to receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, NULL,
SEC_ERASE_SIZE);
if((Flash_Config_Table[FCTIndex].NumDie > 1) &&
(FlashMake == MICRON_ID_BYTE0)) {
XQspiPs_PolledTransfer(QspiPtr, ReadFlagSRCmd, FlagStatus,
sizeof(ReadFlagSRCmd));
}
/*
* Wait for the sector erase command to the Flash to be completed
*/
while (1) {
/*
* Poll the status register of the device to determine
* when it completes, by sending a read status command
* and receiving the status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadStatusCmd,
FlashStatus,
sizeof(ReadStatusCmd));
/*
* If the status indicates the write is done, then stop
* waiting, if a value of 0xFF in the status byte is
* read from the device and this loop never exits, the
* device slave select is possibly incorrect such that
* the device status is not being read
*/
if ((FlashStatus[1] & 0x01) == 0) {
break;
}
}
if((Flash_Config_Table[FCTIndex].NumDie > 1) &&
(FlashMake == MICRON_ID_BYTE0)) {
XQspiPs_PolledTransfer(QspiPtr, ReadFlagSRCmd, FlagStatus,
sizeof(ReadFlagSRCmd));
}
Address += Flash_Config_Table[FCTIndex].SectSize;
}
}
/******************************************************************************
*
* This function reads serial Flash ID connected to the SPI interface.
* It then deduces the make and size of the flash and obtains the
* connection mode to point to corresponding parameters in the flash
* configuration table. The flash driver will function based on this and
* it presently supports Micron and Spansion - 128, 256 and 512Mbit and
* Winbond 128Mbit
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Pointer to the write buffer (which is to be transmitted)
* @param Pointer to the read buffer to which valid received data should be
* written
*
* @return XST_SUCCESS if read id, otherwise XST_FAILURE.
*
* @note None.
*
******************************************************************************/
int FlashReadID(XQspiPs *QspiPtr, u8 *WriteBfrPtr, u8 *ReadBfrPtr)
{
int Status;
int StartIndex;
/*
* Read ID in Auto mode.
*/
WriteBfrPtr[COMMAND_OFFSET] = READ_ID;
WriteBfrPtr[ADDRESS_1_OFFSET] = 0x23; /* 3 dummy bytes */
WriteBfrPtr[ADDRESS_2_OFFSET] = 0x08;
WriteBfrPtr[ADDRESS_3_OFFSET] = 0x09;
Status = XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, ReadBfrPtr,
RD_ID_SIZE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Deduce flash make
*/
if(ReadBfrPtr[1] == MICRON_ID_BYTE0) {
FlashMake = MICRON_ID_BYTE0;
StartIndex = MICRON_INDEX_START;
}else if(ReadBfrPtr[1] == SPANSION_ID_BYTE0) {
FlashMake = SPANSION_ID_BYTE0;
StartIndex = SPANSION_INDEX_START;
}else if(ReadBfrPtr[1] == WINBOND_ID_BYTE0) {
FlashMake = WINBOND_ID_BYTE0;
StartIndex = WINBOND_INDEX_START;
}
/*
* If valid flash ID, then check connection mode & size and
* assign corresponding index in the Flash configuration table
*/
if(((FlashMake == MICRON_ID_BYTE0) || (FlashMake = SPANSION_ID_BYTE0)||
(FlashMake == WINBOND_ID_BYTE0)) &&
(ReadBfrPtr[3] == MICRON_ID_BYTE2_128)) {
switch(QspiPtr->Config.ConnectionMode)
{
case XQSPIPS_CONNECTION_MODE_SINGLE:
FCTIndex = FLASH_CFG_TBL_SINGLE_128_SP + StartIndex;
break;
case XQSPIPS_CONNECTION_MODE_PARALLEL:
FCTIndex = FLASH_CFG_TBL_PARALLEL_128_SP + StartIndex;
break;
case XQSPIPS_CONNECTION_MODE_STACKED:
FCTIndex = FLASH_CFG_TBL_STACKED_128_SP + StartIndex;
break;
default:
FCTIndex = 0;
break;
}
}
/* 256 and 512Mbit supported only for Micron and Spansion, not Winbond */
if(((FlashMake == MICRON_ID_BYTE0) || (FlashMake = SPANSION_ID_BYTE0)) &&
(ReadBfrPtr[3] == MICRON_ID_BYTE2_256)) {
switch(QspiPtr->Config.ConnectionMode)
{
case XQSPIPS_CONNECTION_MODE_SINGLE:
FCTIndex = FLASH_CFG_TBL_SINGLE_256_SP + StartIndex;
break;
case XQSPIPS_CONNECTION_MODE_PARALLEL:
FCTIndex = FLASH_CFG_TBL_PARALLEL_256_SP + StartIndex;
break;
case XQSPIPS_CONNECTION_MODE_STACKED:
FCTIndex = FLASH_CFG_TBL_STACKED_256_SP + StartIndex;
break;
default:
FCTIndex = 0;
break;
}
}
if(((FlashMake == MICRON_ID_BYTE0) || (FlashMake = SPANSION_ID_BYTE0)) &&
(ReadBfrPtr[3] == MICRON_ID_BYTE2_512)) {
switch(QspiPtr->Config.ConnectionMode)
{
case XQSPIPS_CONNECTION_MODE_SINGLE:
FCTIndex = FLASH_CFG_TBL_SINGLE_512_SP + StartIndex;
break;
case XQSPIPS_CONNECTION_MODE_PARALLEL:
FCTIndex = FLASH_CFG_TBL_PARALLEL_512_SP + StartIndex;
break;
case XQSPIPS_CONNECTION_MODE_STACKED:
FCTIndex = FLASH_CFG_TBL_STACKED_512_SP + StartIndex;
break;
default:
FCTIndex = 0;
break;
}
}
/*
* 1Gbit Single connection supported for Spansion.
* The ConnectionMode will indicate stacked as this part has 2 SS
* The device ID will indicate 512Mbit.
* This configuration is handled as the above 512Mbit stacked configuration
*/
/* 1Gbit single, parallel and stacked supported for Micron */
if((FlashMake == MICRON_ID_BYTE0) &&
(ReadBfrPtr[3] == MICRON_ID_BYTE2_1G)) {
switch(QspiPtr->Config.ConnectionMode)
{
case XQSPIPS_CONNECTION_MODE_SINGLE:
FCTIndex = FLASH_CFG_TBL_SINGLE_1GB_MC;
break;
case XQSPIPS_CONNECTION_MODE_PARALLEL:
FCTIndex = FLASH_CFG_TBL_PARALLEL_1GB_MC;
break;
case XQSPIPS_CONNECTION_MODE_STACKED:
FCTIndex = FLASH_CFG_TBL_STACKED_1GB_MC;
break;
default:
FCTIndex = 0;
break;
}
}
xil_printf("FlashID=0x%x 0x%x 0x%x\n\r", ReadBfrPtr[1], ReadBfrPtr[2],
ReadBfrPtr[3]);
return XST_SUCCESS;
}
/******************************************************************************
*
* This function performs an I/O read.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address contains the address of the first sector which needs to
* be erased.
* @param ByteCount contains the total size to be erased.
* @param Command is the command used to read data from the flash. Supports
* normal, fast, dual and quad read commands.
* @param Pointer to the write buffer which contains data to be transmitted
* @param Pointer to the read buffer to which valid received data should be
* written
*
* @return none.
*
* @note None.
*
******************************************************************************/
void FlashRead(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command,
u8 *WriteBfrPtr, u8 *ReadBfrPtr)
{
u32 RealAddr;
u32 RealByteCnt;
u32 BankSel;
u32 BufferIndex;
u32 TotalByteCnt;
u8 ShiftSize;
/*
* Retain the actual byte count
*/
TotalByteCnt = ByteCount;
while(((signed long)(ByteCount)) > 0) {
/*
* Translate address based on type of connection
* If stacked assert the slave select based on address
*/
RealAddr = GetRealAddr(QspiPtr, Address);
/*
* Select bank
*/
if(Flash_Config_Table[FCTIndex].FlashDeviceSize > SIXTEENMB) {
BankSel = RealAddr/SIXTEENMB;
SendBankSelect(QspiPtr, WriteBfrPtr, BankSel);
}
/*
* If data to be read spans beyond the current bank, then
* calculate RealByteCnt in current bank. Else
* RealByteCnt is the same as ByteCount
*/
if((Address & BANKMASK) != ((Address+ByteCount) & BANKMASK)) {
RealByteCnt = (Address & BANKMASK) + SIXTEENMB - Address;
}else {
RealByteCnt = ByteCount;
}
/*
* Setup the write command with the specified address and data for the
* Flash
*/
WriteBfrPtr[COMMAND_OFFSET] = Command;
WriteBfrPtr[ADDRESS_1_OFFSET] = (u8)((RealAddr & 0xFF0000) >> 16);
WriteBfrPtr[ADDRESS_2_OFFSET] = (u8)((RealAddr & 0xFF00) >> 8);
WriteBfrPtr[ADDRESS_3_OFFSET] = (u8)(RealAddr & 0xFF);
if ((Command == FAST_READ_CMD) || (Command == DUAL_READ_CMD) ||
(Command == QUAD_READ_CMD)) {
RealByteCnt += DUMMY_SIZE;
}
/*
* Send the read command to the Flash to read the specified number
* of bytes from the Flash, send the read command and address and
* receive the specified number of bytes of data in the data buffer
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr,
&(ReadBfrPtr[TotalByteCnt - ByteCount]),
RealByteCnt + OVERHEAD_SIZE);
/*
* To discard the first 5 dummy bytes, shift the data in read buffer
*/
if((Command == FAST_READ_CMD) || (Command == DUAL_READ_CMD) ||
(Command == QUAD_READ_CMD)){
ShiftSize = OVERHEAD_SIZE + DUMMY_SIZE;
}else{
ShiftSize = OVERHEAD_SIZE;
}
for(BufferIndex = (TotalByteCnt - ByteCount);
BufferIndex < (TotalByteCnt - ByteCount) + RealByteCnt;
BufferIndex++) {
ReadBfrPtr[BufferIndex] = ReadBfrPtr[BufferIndex + ShiftSize];
}
/*
* Increase address to next bank
*/
Address = (Address & BANKMASK) + SIXTEENMB;
/*
* Decrease byte count by bytes already read.
*/
if ((Command == FAST_READ_CMD) || (Command == DUAL_READ_CMD) ||
(Command == QUAD_READ_CMD)) {
ByteCount = ByteCount - (RealByteCnt - DUMMY_SIZE);
}else {
ByteCount = ByteCount - RealByteCnt;
}
}
}
/******************************************************************************
*
* This functions selects the current bank
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Pointer to the write buffer which contains data to be transmitted
* @param BankSel is the bank to be selected in the flash device(s).
*
* @return XST_SUCCESS if bank selected, otherwise XST_FAILURE.
*
* @note None.
*
******************************************************************************/
int SendBankSelect(XQspiPs *QspiPtr, u8 *WriteBfrPtr, u32 BankSel)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
/*
* Bank select commands for Micron and Spansion are different
*/
if(FlashMake == MICRON_ID_BYTE0) {
/*
* For Micron command WREN should be sent first
* except for some specific feature set
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
WriteBfrPtr[COMMAND_OFFSET] = EXTADD_REG_WR;
WriteBfrPtr[ADDRESS_1_OFFSET] = BankSel;
/*
* Send the Extended address register write command
* written, no receive buffer required
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, NULL,
BANK_SEL_SIZE);
}
if(FlashMake == SPANSION_ID_BYTE0) {
WriteBfrPtr[COMMAND_OFFSET] = BANK_REG_WR;
WriteBfrPtr[ADDRESS_1_OFFSET] = BankSel;
/*
* Send the Extended address register write command
* written, no receive buffer required
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, NULL,
BANK_SEL_SIZE);
}
/* Winbond can be added here */
return XST_SUCCESS;
}
/******************************************************************************
*
* This functions performs a bulk erase operation when the
* flash device has a single die. Works for both Spansion and Micron
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param WritBfrPtr is the pointer to command+address to be sent
*
* @return None
*
* @note None.
*
******************************************************************************/
void BulkErase(XQspiPs *QspiPtr, u8 *WriteBfrPtr)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
u8 ReadStatusCmd[] = { READ_STATUS_CMD, 0 }; /* Must send 2 bytes */
u8 FlashStatus[2];
/*
* Send the write enable command to the Flash so that it can be
* written to, this needs to be sent as a separate transfer
* before the erase
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the bulk erase command
*/
WriteBfrPtr[COMMAND_OFFSET] = BULK_ERASE_CMD;
/*
* Send the bulk erase command; no receive buffer is specified
* since there is nothing to receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, NULL,
BULK_ERASE_SIZE);
/*
* Wait for the erase command to the Flash to be completed
*/
while (1) {
/*
* Poll the status register of the device to determine
* when it completes, by sending a read status command
* and receiving the status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadStatusCmd,
FlashStatus,
sizeof(ReadStatusCmd));
/*
* If the status indicates the write is done, then stop
* waiting; if a value of 0xFF in the status byte is
* read from the device and this loop never exits, the
* device slave select is possibly incorrect such that
* the device status is not being read
*/
if ((FlashStatus[1] & 0x01) == 0) {
break;
}
}
}
/******************************************************************************
*
* This functions performs a die erase operation on all the die in
* the flash device. This function uses the die erase command for
* Micron 512Mbit and 1Gbit
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param WritBfrPtr is the pointer to command+address to be sent
*
* @return None
*
* @note None.
*
******************************************************************************/
void DieErase(XQspiPs *QspiPtr, u8 *WriteBfrPtr)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
u8 DieCnt;
u8 ReadFlagSRCmd[] = { READ_FLAG_STATUS_CMD, 0 };
u8 FlagStatus[2];
for(DieCnt = 0; DieCnt < Flash_Config_Table[FCTIndex].NumDie; DieCnt++) {
/*
* Select bank - the lower of the 2 banks in each die
* This is specific to Micron flash
*/
SendBankSelect(QspiPtr, WriteBfrPtr, DieCnt*2);
/*
* Send the write enable command to the SEEPOM so that it can be
* written to, this needs to be sent as a separate transfer
* before the write
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the write command with the specified address and data
* for the Flash
*/
/*
* This ensures 3B address is sent to flash even with address
* greater than 128Mb.
* The address is the start address of die - MSB bits will be
* derived from bank select by the flash
*/
WriteBfrPtr[COMMAND_OFFSET] = DIE_ERASE_CMD;
WriteBfrPtr[ADDRESS_1_OFFSET] = 0x00;
WriteBfrPtr[ADDRESS_2_OFFSET] = 0x00;
WriteBfrPtr[ADDRESS_3_OFFSET] = 0x00;
/*
* Send the sector erase command and address; no receive buffer
* is specified since there is nothing to receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBfrPtr, NULL,
DIE_ERASE_SIZE);
/*
* Wait for the sector erase command to the Flash to be completed
*/
while (1) {
/*
* Poll the status register of the device to determine
* when it completes, by sending a read status command
* and receiving the status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadFlagSRCmd, FlagStatus,
sizeof(ReadFlagSRCmd));
/*
* If the status indicates the write is done, then stop
* waiting, if a value of 0xFF in the status byte is
* read from the device and this loop never exits, the
* device slave select is possibly incorrect such that
* the device status is not being read
*/
if ((FlagStatus[1] & 0x80) == 0x80) {
break;
}
}
}
}
/******************************************************************************
*
* This functions translates the address based on the type of interconnection.
* In case of stacked, this function asserts the corresponding slave select.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address which is to be accessed (for erase, write or read)
*
* @return RealAddr is the translated address - for single it is unchanged;
* for stacked, the lower flash size is subtracted;
* for parallel the address is divided by 2.
*
* @note None.
*
******************************************************************************/
u32 GetRealAddr(XQspiPs *QspiPtr, u32 Address)
{
u32 LqspiCr;
u32 RealAddr;
switch(QspiPtr->Config.ConnectionMode) {
case XQSPIPS_CONNECTION_MODE_SINGLE:
RealAddr = Address;
break;
case XQSPIPS_CONNECTION_MODE_STACKED:
/*
* Get the current LQSPI Config reg value
*/
LqspiCr = XQspiPs_GetLqspiConfigReg(QspiPtr);
/* Select lower or upper Flash based on sector address */
if(Address & Flash_Config_Table[FCTIndex].FlashDeviceSize) {
/*
* Set selection to U_PAGE
*/
XQspiPs_SetLqspiConfigReg(QspiPtr,
LqspiCr | XQSPIPS_LQSPI_CR_U_PAGE_MASK);
/*
* Subtract first flash size when accessing second flash
*/
RealAddr = Address &
(~Flash_Config_Table[FCTIndex].FlashDeviceSize);
}else{
/*
* Set selection to L_PAGE
*/
XQspiPs_SetLqspiConfigReg(QspiPtr,
LqspiCr & (~XQSPIPS_LQSPI_CR_U_PAGE_MASK));
RealAddr = Address;
}
/*
* Assert the Flash chip select.
*/
XQspiPs_SetSlaveSelect(QspiPtr);
break;
case XQSPIPS_CONNECTION_MODE_PARALLEL:
/*
* The effective address in each flash is the actual
* address / 2
*/
RealAddr = Address / 2;
break;
default:
/* RealAddr wont be assigned in this case; */
break;
}
return(RealAddr);
}