
Added initial support Xilinx Embedded Software. Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
2973 lines
82 KiB
C
Executable file
2973 lines
82 KiB
C
Executable file
/******************************************************************************
|
|
*
|
|
* Copyright (C) 2007 - 2014 Xilinx, Inc. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* Use of the Software is limited solely to applications:
|
|
* (a) running on a Xilinx device, or
|
|
* (b) that interact with a Xilinx device through a bus or interconnect.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
|
|
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* Except as contained in this notice, the name of the Xilinx shall not be used
|
|
* in advertising or otherwise to promote the sale, use or other dealings in
|
|
* this Software without prior written authorization from Xilinx.
|
|
*
|
|
******************************************************************************/
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* @file xilflash_intel.c
|
|
*
|
|
* This file implements the Intel CFI Version of the XFlash Library.
|
|
*
|
|
* @note
|
|
*
|
|
* - Special consideration has to be given to varying data bus widths. To boost
|
|
* performance, multiple devices in parallel on the data bus are accessed
|
|
* in parallel. Therefore to reduce complexity and increase performance,
|
|
* many local primitive functions are duplicated with the only difference
|
|
* being the width of writes to the devices.
|
|
* <br><br>
|
|
* Even with the performance boosting optimizations, the overhead
|
|
* associated is rather high due to the general purpose nature of its
|
|
* design.
|
|
* <br><br>
|
|
* Flash block erasing is a time consuming operation with nearly all
|
|
* latency occurring due to the devices' themselves. It takes on the order
|
|
* of 1 second to erase each block.
|
|
* <br><br>
|
|
* Writes by comparison are much quicker so library overhead becomes an
|
|
* issue.
|
|
* The write algorithm has been optimized for bulk data programming and
|
|
* should provide relatively better performance.
|
|
* - The code/comments refers to WSM frequently. This stands for Write State
|
|
* Machine. WSM is the internal programming engine of the devices.
|
|
* - This library and the underlying Intel flash memory does not allow re-
|
|
* programming while code is executing from the same memory.
|
|
* - If hardware is flakey or fails, then this library could hang a thread of
|
|
* execution.
|
|
*
|
|
* <pre>
|
|
*
|
|
* MODIFICATION HISTORY:
|
|
*
|
|
* Ver Who Date Changes
|
|
* ----- ---- -------- -----------------------------------------------
|
|
* 1.00a rmm 10/25/07 First release
|
|
* 1.00a mta 10/25/07 Updated to flash library
|
|
* 1.01a ksu 04/10/08 Added support for AMD CFI Interface
|
|
* 1.02a ksu 06/16/09 Added support for multiple banks in Intel flash
|
|
* Added Reset Bank function
|
|
* Added support for 0xF0 reset command
|
|
* Added support for Xilinx Platform Flash XL.
|
|
* Added XFL_DEVCTL_SET_CONFIG_REG IOCTL to write to the
|
|
* Configuration Register of the Xilinx Platform Flash XL
|
|
* which can be used to set the Flash in Sync/Async mode.
|
|
* The Xilinx Platform Flash XL is set to Async mode during
|
|
* the initialization of the library.
|
|
* Added bank(s) reset function at the top of the read
|
|
* function.
|
|
* Updated Lock and Unlock operations for multiple blocks.
|
|
* 1.03a ksu 10/07/09 Added support for large buffer size flash (CR535564)
|
|
* 3.01a srt 03/02/12 Added support for Micron G18 Flash device to fix
|
|
* CRs 648372, 648282.
|
|
* Modified XFlashIntel_Reset function to reset all the
|
|
* partitions.
|
|
* 3.02a srt 05/30/12 Changed Implementation for Micron G18 Flash, which
|
|
* fixes the CR 662317.
|
|
* CR 662317 Description - Xilinx Platform Flash on ML605
|
|
* fails to work.
|
|
* 3.03a srt 11/04/12 Fixed CR 679937 -
|
|
* Description: Non-word aligned data write to flash fails
|
|
* with AXI interface.
|
|
* </pre>
|
|
*
|
|
******************************************************************************/
|
|
|
|
/***************************** Include Files *********************************/
|
|
|
|
#include "include/xilflash.h"
|
|
|
|
#ifdef XPAR_XFL_DEVICE_FAMILY_INTEL
|
|
#include "include/xilflash_intel.h"
|
|
#include "include/xilflash_cfi.h"
|
|
|
|
/************************** Constant Definitions *****************************/
|
|
|
|
/**************************** Type Definitions *******************************/
|
|
|
|
/*
|
|
* Define a single type used to access the status register irregardless of the
|
|
* width of the devices
|
|
*/
|
|
typedef union {
|
|
u8 Mask8;
|
|
u16 Mask16;
|
|
u32 Mask32;
|
|
Xuint64 Mask64;
|
|
} StatReg;
|
|
|
|
/*
|
|
* Define Intel specific data to be part of the instance. This structure will
|
|
* overlay the XFlash_PartData structure attribute of the base class.
|
|
*/
|
|
typedef struct XFlashVendorData_IntelTag {
|
|
u32 WriteBufferWordCount; /* This value is written to the WSM when
|
|
telling it how many words will be
|
|
programmed (always will be the
|
|
maximum
|
|
allowed) */
|
|
StatReg SR_WsmReady; /* Status register bitmask for WSM ready */
|
|
StatReg SR_LastError; /* Status register bitmask for error condition */
|
|
|
|
/*
|
|
* The following functions are specific to the width of the data bus and
|
|
* will be assigned during initialization.
|
|
*
|
|
* SendCmd - Writes a single command to the devices.
|
|
* SendCmdSeq - Writes two commands in successive bus cycles to the
|
|
* devices.
|
|
* WriteBuffer - Programming algorithm optimized to perform bulk writes
|
|
* to devices.
|
|
* GetStatus - Retrieve and interpret the status registers of the
|
|
* devices
|
|
* PollSR - Poll the status register of the devices until the WSM
|
|
* signals ready.
|
|
*/
|
|
void (*SendCmd) (u32 BaseAddr, u32 Offset, u32 Cmd);
|
|
void (*SendCmdSeq) (u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
|
|
|
|
int (*WriteBuffer) (XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes);
|
|
|
|
int (*GetStatus) (XFlash *InstancePtr, u32 Offset);
|
|
int (*PollSR) (XFlash *InstancePtr, u32 Offset);
|
|
|
|
} XFlashVendorData_Intel;
|
|
|
|
/***************** Macros (Inline Functions) Definitions *********************/
|
|
|
|
/*****************************************************************************
|
|
* GET_PARTDATA - Type safe way to convert the base component VendorData type
|
|
* to the family specific VendorData_Intel type.
|
|
*
|
|
* Macro signature:
|
|
*
|
|
* XFlashVendorData_Intel *GET_PARTDATA(XFlash_PartData *BaseComponent)
|
|
*****************************************************************************/
|
|
#define GET_PARTDATA(BaseComponent) \
|
|
((XFlashVendorData_Intel*)&((BaseComponent)->VendorData))
|
|
|
|
/************************** Function Prototypes ******************************/
|
|
|
|
static void SendCmd8(u32 BaseAddr, u32 Offset, u32 Cmd);
|
|
static void SendCmd16(u32 BaseAddr, u32 Offset, u32 Cmd);
|
|
static void SendCmd32(u32 BaseAddr, u32 Offset, u32 Cmd);
|
|
static void SendCmd64(u32 BaseAddr, u32 Offset, u32 Cmd);
|
|
|
|
static void SendCmdSeq8(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
|
|
static void SendCmdSeq16(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
|
|
static void SendCmdSeq32(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
|
|
static void SendCmdSeq64(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
|
|
|
|
static int GetStatus8(XFlash *InstancePtr, u32 Offset);
|
|
static int GetStatus16(XFlash *InstancePtr, u32 Offset);
|
|
static int GetStatus32(XFlash *InstancePtr, u32 Offset);
|
|
static int GetStatus64(XFlash *InstancePtr, u32 Offset);
|
|
|
|
static int WriteBuffer8(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes);
|
|
static int WriteBuffer16(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes);
|
|
static int WriteBuffer32(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes);
|
|
static int WriteBuffer64(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes);
|
|
|
|
static int PollSR8(XFlash *InstancePtr, u32 Offset);
|
|
static int PollSR16(XFlash *InstancePtr, u32 Offset);
|
|
static int PollSR32(XFlash *InstancePtr, u32 Offset);
|
|
static int PollSR64(XFlash *InstancePtr, u32 Offset);
|
|
|
|
static int SetRYBY(XFlash *InstancePtr, u32 Mode);
|
|
static void GetPartID(XFlash *InstancePtr);
|
|
static int XFlashIntel_ResetBank(XFlash *InstancePtr, u32 Offset, u32 Bytes);
|
|
static u16 EnqueueEraseBlocks(XFlash *InstancePtr, u16 *RegionPtr,
|
|
u16 *BlockPtr, u16 MaxBlocks);
|
|
|
|
extern int XFlashGeometry_ToBlock(XFlashGeometry *InstancePtr,
|
|
u32 AbsoluteOffset,
|
|
u16 *Region, u16 *Block, u32 *BlockOffset);
|
|
extern int XFlashGeometry_ToAbsolute(XFlashGeometry *InstancePtr,
|
|
u16 Region,
|
|
u16 Block,
|
|
u32 BlockOffset, u32 *AbsoluteOffsetPtr);
|
|
|
|
/************************** Variable Definitions *****************************/
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Initializes a XFlash instance with device family specific details. The
|
|
* initialization entails:
|
|
*
|
|
* - Assign part access primitive functions depending on bus width.
|
|
* - Reset the device.
|
|
*
|
|
* @param InstancePtr is a pointer to the XFlash instance.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_PART_NOT_SUPPORTED if the command set algorithm or
|
|
* Layout is not supported by any specific flash device family
|
|
* compiled into the system.
|
|
* - XST_FAILURE if error.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Initialize(XFlash *InstancePtr)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u32 Layout;
|
|
int BusWidthBytes;
|
|
|
|
/*
|
|
* Verify inputs are valid
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Grab layout and get Vendor specific part information
|
|
*/
|
|
Layout = InstancePtr->Geometry.MemoryLayout;
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Setup alignment of the write buffer.
|
|
*/
|
|
if (InstancePtr->Properties.ProgCap.WriteBufferSize != NULL) {
|
|
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask =
|
|
InstancePtr->Properties.ProgCap.WriteBufferSize - 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Setup layout dependent attributes. These include:
|
|
* - Part access primitive functions optimized for a specific bus
|
|
* width.
|
|
* - SR_WsmRead.MaskX is set according to the SR_WSM_READY constant
|
|
* defined as 0x80. We don't use that constant here because it is
|
|
* simpler to define with a magic number rather than use complex
|
|
* masks and shifting operations.
|
|
*/
|
|
switch (Layout) {
|
|
|
|
case XFL_LAYOUT_X16_X8_X1:
|
|
DevDataPtr->SR_WsmReady.Mask8 = 0x80;
|
|
DevDataPtr->GetStatus = GetStatus8;
|
|
DevDataPtr->SendCmd = SendCmd8;
|
|
DevDataPtr->SendCmdSeq = SendCmdSeq8;
|
|
DevDataPtr->PollSR = PollSR8;
|
|
DevDataPtr->WriteBuffer = WriteBuffer8;
|
|
break;
|
|
|
|
case XFL_LAYOUT_X16_X16_X1:
|
|
DevDataPtr->SR_WsmReady.Mask16 = 0x0080;
|
|
DevDataPtr->GetStatus = GetStatus16;
|
|
DevDataPtr->SendCmd = SendCmd16;
|
|
DevDataPtr->SendCmdSeq = SendCmdSeq16;
|
|
DevDataPtr->PollSR = PollSR16;
|
|
DevDataPtr->WriteBuffer = WriteBuffer16;
|
|
break;
|
|
|
|
case XFL_LAYOUT_X16_X16_X2:
|
|
DevDataPtr->SR_WsmReady.Mask32 = 0x00800080;
|
|
DevDataPtr->GetStatus = GetStatus32;
|
|
DevDataPtr->SendCmd = SendCmd32;
|
|
DevDataPtr->SendCmdSeq = SendCmdSeq32;
|
|
DevDataPtr->PollSR = PollSR32;
|
|
DevDataPtr->WriteBuffer = WriteBuffer32;
|
|
break;
|
|
|
|
case XFL_LAYOUT_X16_X16_X4:
|
|
DevDataPtr->SR_WsmReady.Mask32 = 0x00800080;
|
|
DevDataPtr->GetStatus = GetStatus64;
|
|
DevDataPtr->SendCmd = SendCmd64;
|
|
DevDataPtr->SendCmdSeq = SendCmdSeq64;
|
|
DevDataPtr->PollSR = PollSR64;
|
|
DevDataPtr->WriteBuffer = WriteBuffer64;
|
|
break;
|
|
|
|
default:
|
|
return (XFLASH_PART_NOT_SUPPORTED);
|
|
}
|
|
|
|
/*
|
|
* Calculate data written during a buffer write that tells the buffer
|
|
* how many words are going to be written to the buffer. This value is
|
|
* based on ProgCap.WriteBufferSize which was taken from the standard
|
|
* CFI query at offset 2Ah. Dividing this value by the width of the data
|
|
* bus gives us the maximum number of writes to the buffer per Intel
|
|
* literature.
|
|
*/
|
|
BusWidthBytes = (Layout & XFL_LAYOUT_NUM_PARTS_MASK) *
|
|
((Layout & XFL_LAYOUT_PART_MODE_MASK) >> 8);
|
|
DevDataPtr->WriteBufferWordCount =
|
|
(InstancePtr->Properties.ProgCap.WriteBufferSize /
|
|
BusWidthBytes) - 1;
|
|
|
|
/*
|
|
* Get part ID.
|
|
*/
|
|
GetPartID(InstancePtr);
|
|
|
|
/*
|
|
* Reset the part.
|
|
*/
|
|
(void) XFlashIntel_Reset(InstancePtr);
|
|
|
|
/*
|
|
* Zero out error data and return.
|
|
*/
|
|
XUINT64_MSW(DevDataPtr->SR_LastError.Mask64) = 0;
|
|
XUINT64_LSW(DevDataPtr->SR_LastError.Mask64) = 0;
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* The routine reads the data from the Intel flash device and copies it into
|
|
* user buffer.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset into the device(s) address space from
|
|
* which to read.
|
|
* @param Bytes is the number of bytes to copy.
|
|
* @param DestPtr is the destination address to copy data to.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ADDRESS_ERROR if the source address does not start
|
|
* within the addressable areas of the device(s).
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Read(XFlash *InstancePtr, u32 Offset, u32 Bytes, void *DestPtr)
|
|
{
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
if(DestPtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Check to make sure start address is within the device.
|
|
*/
|
|
if (!XFL_GEOMETRY_IS_ABSOLUTE_VALID(&InstancePtr->Geometry, Offset)) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Reset the bank(s) so that it returns to the read mode.
|
|
*/
|
|
if (XFlashIntel_ResetBank(InstancePtr, Offset, Bytes)!= XST_SUCCESS) {
|
|
return (XST_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* Perform copy to the user buffer from the buffer.
|
|
*/
|
|
memcpy(DestPtr, (void *) (InstancePtr->Geometry.BaseAddress + Offset),
|
|
Bytes);
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Programs the Intel flash device with data stored in the user buffer.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset into the device(s) address space from which
|
|
* to begin programming. Must be aligned to the width of the
|
|
* flash's data bus.
|
|
* @param Bytes is the number of bytes to program.
|
|
* @param SrcPtr is the source address containing data to be programmed.
|
|
* Must be aligned to the width of the flash's data bus.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ERROR if a write error occurred. This error is
|
|
* usually device specific. Use XFlash_DeviceControl() to
|
|
* retrieve specific error conditions. When this error is
|
|
* returned, it is possible that the target address range was
|
|
* only partially programmed.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Write(XFlash *InstancePtr, u32 Offset, u32 Bytes, void *SrcPtr)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
int Status;
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
if(SrcPtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Nothing specified to be programmed.
|
|
*/
|
|
if (Bytes == 0) {
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Verify the address range is within the part.
|
|
*/
|
|
if (!XFL_GEOMETRY_IS_ABSOLUTE_VALID(&InstancePtr->Geometry, Offset) ||
|
|
!XFL_GEOMETRY_IS_ABSOLUTE_VALID(&InstancePtr->Geometry,
|
|
Offset + Bytes - 1)) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Call the proper write buffer function.
|
|
*/
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
Status = DevDataPtr->WriteBuffer(InstancePtr, (void *)
|
|
(InstancePtr->Geometry.BaseAddress +
|
|
Offset), SrcPtr, Bytes);
|
|
|
|
/*
|
|
* Reset the bank(s) so that it returns to the read mode.
|
|
*/
|
|
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
|
|
|
|
return (Status);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Erases the specified address range in the Intel Flash device.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset into the device(s) address space from which
|
|
* to begin erasure.
|
|
* @param Bytes is the number of bytes to erase.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ADDRESS_ERROR if the destination address range is
|
|
* not completely within the addressable areas of the device(s).
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Erase(XFlash *InstancePtr, u32 Offset, u32 Bytes)
|
|
{
|
|
u16 StartRegion, EndRegion;
|
|
u16 StartBlock, EndBlock;
|
|
u16 BlocksLeft, BlocksQueued;
|
|
u32 Dummy;
|
|
XFlashGeometry *GeomPtr;
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
int Status;
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
GeomPtr = &InstancePtr->Geometry;
|
|
|
|
/*
|
|
* Handle case when zero bytes is provided.
|
|
*/
|
|
if (Bytes == 0) {
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Convert the starting address to block coordinates. This also verifies
|
|
* the starting address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &StartRegion,
|
|
&StartBlock, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Convert the ending address to block coordinates. This also verifies
|
|
* the ending address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset + Bytes - 1,
|
|
&EndRegion, &EndBlock, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Erase loop. Queue up as many blocks at a time until all are erased.
|
|
*/
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BlocksLeft = XFL_GEOMETRY_BLOCK_DIFF(GeomPtr, StartRegion, StartBlock,
|
|
EndRegion, EndBlock);
|
|
|
|
while (BlocksLeft > 0) {
|
|
BlocksQueued = EnqueueEraseBlocks(InstancePtr, &StartRegion,
|
|
&StartBlock, BlocksLeft);
|
|
BlocksLeft -= BlocksQueued;
|
|
|
|
Status = DevDataPtr->PollSR(InstancePtr, Offset);
|
|
if (Status != XFLASH_READY) {
|
|
(void) XFlashIntel_ResetBank(InstancePtr, Offset,
|
|
Bytes);
|
|
return (Status);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset the bank(s) so that it returns to the read mode.
|
|
*/
|
|
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Locks the blocks in the specified range of the Intel flash device.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset into the device(s) address space from which
|
|
* to begin block locking. The first three bytes of every block is
|
|
* reserved for special purpose. The offset should be atleast three
|
|
* bytes from start of the block.
|
|
* @param Bytes indicates the number of bytes to Lock in the Block
|
|
* starting from Offset.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ADDRESS_ERROR if the destination address range is
|
|
* not completely within the addressable areas of the device(s).
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Lock(XFlash *InstancePtr, u32 Offset, u32 Bytes)
|
|
{
|
|
volatile u16 StatusReg;
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u16 StartRegion, EndRegion;
|
|
u16 StartBlock, EndBlock;
|
|
u16 Region, Block;
|
|
u16 BlocksLeft;
|
|
u32 Dummy;
|
|
u32 BaseAddress;
|
|
u32 BlockAddress;
|
|
int Status;
|
|
XFlashGeometry *GeomPtr;
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
GeomPtr = &InstancePtr->Geometry;
|
|
BaseAddress = GeomPtr->BaseAddress;
|
|
|
|
/*
|
|
* Handle case when zero bytes is provided.
|
|
*/
|
|
if (Bytes == 0) {
|
|
/*
|
|
* Lock 1 block (for backward compatibility)
|
|
*/
|
|
Bytes = 1;
|
|
}
|
|
|
|
/*
|
|
* Convert the starting address to block coordinates. This also verifies
|
|
* the starting address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &StartRegion,
|
|
&StartBlock, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Convert the ending address to block coordinates. This also verifies
|
|
* the ending address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset + Bytes - 1,
|
|
&EndRegion, &EndBlock, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Find total number of blocks to be locked.
|
|
*/
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BlocksLeft = XFL_GEOMETRY_BLOCK_DIFF(GeomPtr, StartRegion, StartBlock,
|
|
EndRegion, EndBlock);
|
|
|
|
/*
|
|
* Sample the register(s). Wait till the device is ready.
|
|
*/
|
|
DevDataPtr->SendCmd(BaseAddress, Offset, XFL_INTEL_CMD_READ_STATUS_REG);
|
|
StatusReg = READ_FLASH_16(BaseAddress + Offset);
|
|
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
|
|
StatusReg = READ_FLASH_8(BaseAddress + Offset);
|
|
}
|
|
|
|
Region = StartRegion;
|
|
Block = StartBlock;
|
|
|
|
while (BlocksLeft > 0) {
|
|
/*
|
|
* Find the block address.
|
|
*/
|
|
(void) XFlashGeometry_ToAbsolute(GeomPtr, Region, Block, 0,
|
|
&BlockAddress);
|
|
|
|
/*
|
|
* Clear any latched status register content.
|
|
*/
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_CLEAR_STATUS_REG);
|
|
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_LOCK_BLOCK_SET);
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_LOCK_BLOCK_SET_CONFIRM);
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_READ_STATUS_REG);
|
|
/*
|
|
* Check if the Locking is done and device is ready.
|
|
*/
|
|
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
|
|
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
|
|
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
|
|
}
|
|
|
|
/*
|
|
* Check if any Lock error has occurred.
|
|
*/
|
|
if(StatusReg & XFL_INTEL_SR_PROG_OR_LOCK_ERROR) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Increment Region/Block.
|
|
*/
|
|
XFL_GEOMETRY_INCREMENT(GeomPtr, Region, Block);
|
|
|
|
BlocksLeft--;
|
|
}
|
|
|
|
/*
|
|
* Reset the bank(s) so that it returns to the read mode.
|
|
*/
|
|
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Unlocks the blocks in the specified range of the Intel flash device.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset into the device(s) address space from which
|
|
* to begin block UnLocking. The first three bytes of every block
|
|
* is reserved for special purpose. The offset should be atleast
|
|
* three bytes from start of the block.
|
|
* @param Bytes indicates the number of bytes to UnLock in the Block
|
|
* starting from Offset.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ADDRESS_ERROR if the destination address range is
|
|
* not completely within the addressable areas of the device(s).
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Unlock(XFlash *InstancePtr, u32 Offset, u32 Bytes)
|
|
{
|
|
|
|
volatile u16 StatusReg;
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u16 StartRegion, EndRegion;
|
|
u16 StartBlock, EndBlock;
|
|
u16 Region, Block;
|
|
u16 BlocksLeft;
|
|
u32 Dummy;
|
|
u32 BaseAddress;
|
|
u32 BlockAddress;
|
|
int Status;
|
|
XFlashGeometry *GeomPtr;
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
GeomPtr = &InstancePtr->Geometry;
|
|
BaseAddress = GeomPtr->BaseAddress;
|
|
|
|
/*
|
|
* Handle case when zero bytes is provided.
|
|
*/
|
|
if (Bytes == 0) {
|
|
/*
|
|
* Unlock 1 block (for backward compatibility)
|
|
*/
|
|
Bytes = 1;
|
|
}
|
|
|
|
/*
|
|
* Convert the starting address to block coordinates. This also verifies
|
|
* the starting address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &StartRegion,
|
|
&StartBlock, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Convert the ending address to block coordinates. This also verifies
|
|
* the ending address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset + Bytes - 1,
|
|
&EndRegion, &EndBlock, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Find total number of blocks to be unlocked.
|
|
*/
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BlocksLeft = XFL_GEOMETRY_BLOCK_DIFF(GeomPtr, StartRegion, StartBlock,
|
|
EndRegion, EndBlock);
|
|
|
|
/*
|
|
* Sample the register(s). Wait till the device is ready.
|
|
*/
|
|
DevDataPtr->SendCmd(BaseAddress, Offset, XFL_INTEL_CMD_READ_STATUS_REG);
|
|
StatusReg = READ_FLASH_16(BaseAddress + Offset);
|
|
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
|
|
StatusReg = READ_FLASH_8(BaseAddress + Offset);
|
|
}
|
|
|
|
Region = StartRegion;
|
|
Block = StartBlock;
|
|
|
|
while (BlocksLeft > 0) {
|
|
/*
|
|
* Find the block address.
|
|
*/
|
|
(void) XFlashGeometry_ToAbsolute(GeomPtr, Region, Block, 0,
|
|
&BlockAddress);
|
|
|
|
/*
|
|
* Clear any latched status register content.
|
|
*/
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_CLEAR_STATUS_REG);
|
|
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_LOCK_BLOCK_CLEAR);
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_LOCK_BLOCK_CLEAR_CONFIRM);
|
|
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_READ_STATUS_REG);
|
|
|
|
/*
|
|
* Check if the Unlocking is done and device is ready.
|
|
*/
|
|
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
|
|
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
|
|
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
|
|
}
|
|
|
|
/*
|
|
* Check if any Unlock error has occurred.
|
|
*/
|
|
if(StatusReg & XFL_INTEL_SR_ERASE_OR_UNLOCK_ERROR) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Increment Region/Block.
|
|
*/
|
|
XFL_GEOMETRY_INCREMENT(GeomPtr, Region, Block);
|
|
|
|
BlocksLeft--;
|
|
}
|
|
|
|
/*
|
|
* Reset the bank(s) so that it returns to the read mode.
|
|
*/
|
|
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Clears the Intel flash device status register(s) and place the device(s) into
|
|
* read mode.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_BUSY if the flash devices were in the middle of an
|
|
* operation and could not be reset.
|
|
* - XFLASH_ERROR if the device(s) have experienced an internal
|
|
* error during the operation. XFlash_DeviceControl() must be
|
|
* used to access the cause of the device specific error
|
|
* condition.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_Reset(XFlash *InstancePtr)
|
|
{
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Send reset for all region/bank(s) in the device.
|
|
*/
|
|
return (XFlashIntel_ResetBank(InstancePtr, 0,
|
|
InstancePtr->Geometry.DeviceSize));
|
|
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Clears the Intel flash bank status register and place the bank into read mode.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the bank address.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_BUSY if the flash bank were in the middle of an
|
|
* operation and could not be reset.
|
|
* - XFLASH_ERROR if the bank have experienced an internal error
|
|
* during the operation. XFlash_DeviceControl() must be used to
|
|
* access the cause of the device specific error condition.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static int XFlashIntel_ResetBank(XFlash *InstancePtr, u32 Offset, u32 Bytes)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
int Status;
|
|
u16 Region, Block;
|
|
u32 BaseAddress;
|
|
u32 Dummy;
|
|
XFlashGeometry *GeomPtr;
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Handle case when zero bytes is provided.
|
|
*/
|
|
if (Bytes == 0) {
|
|
return XST_SUCCESS;
|
|
}
|
|
|
|
GeomPtr = &InstancePtr->Geometry;
|
|
BaseAddress = GeomPtr->BaseAddress;
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Convert the starting address to block coordinates. This also verifies
|
|
* the starting address is within the instance's address space.
|
|
*/
|
|
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &Region,
|
|
&Block, &Dummy);
|
|
if (Status != XST_SUCCESS) {
|
|
return (XFLASH_ADDRESS_ERROR);
|
|
}
|
|
|
|
|
|
while ((GeomPtr->EraseRegion[Region].AbsoluteOffset <=
|
|
(Offset + Bytes - 1)) &&
|
|
(Region < InstancePtr->Geometry.NumEraseRegions)) {
|
|
/*
|
|
* Send the clear status register command. Use the max write
|
|
* width to notify parts of all layouts.
|
|
*/
|
|
DevDataPtr->SendCmd(BaseAddress,
|
|
GeomPtr->EraseRegion[Region].AbsoluteOffset,
|
|
XFL_INTEL_CMD_CLEAR_STATUS_REG);
|
|
DevDataPtr->SendCmd(BaseAddress,
|
|
GeomPtr->EraseRegion[Region].AbsoluteOffset,
|
|
XFL_INTEL_CMD_READ_STATUS_REG);
|
|
|
|
/*
|
|
* Sample the status of the parts, then place them into
|
|
* read-array mode.
|
|
*/
|
|
Status = DevDataPtr->GetStatus(InstancePtr,
|
|
GeomPtr->EraseRegion[Region].AbsoluteOffset);
|
|
|
|
/*
|
|
* Some Intel CFI chips support 0xF0 command instead of 0xFF as
|
|
* reset/read array command.
|
|
*/
|
|
DevDataPtr->SendCmd(BaseAddress,
|
|
GeomPtr->EraseRegion[Region].AbsoluteOffset,
|
|
XFL_INTEL_CMD_RESET_0xF0);
|
|
DevDataPtr->SendCmd(BaseAddress,
|
|
GeomPtr->EraseRegion[Region].AbsoluteOffset,
|
|
XFL_INTEL_CMD_READ_ARRAY);
|
|
|
|
/*
|
|
* If the status is not ready, then something is wrong.
|
|
*/
|
|
if (Status != XFLASH_READY) {
|
|
if (Status != XFLASH_BUSY) {
|
|
return (XFLASH_ERROR);
|
|
}
|
|
else {
|
|
return (XFLASH_BUSY);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Increment the region/bank.
|
|
*/
|
|
Region++;
|
|
}
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Performs the Intel device specific control functions.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Command is the device specific command to issue.
|
|
* @param Parameters specifies the arguments passed to the device control
|
|
* function.
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful
|
|
* - XFLASH_NOT_SUPPORTED if the command is not
|
|
* recognized/supported by the device(s).
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
int XFlashIntel_DeviceControl(XFlash *InstancePtr, u32 Command,
|
|
DeviceCtrlParam *Parameters)
|
|
{
|
|
int Status;
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
|
|
/*
|
|
* Verify inputs are valid.
|
|
*/
|
|
if(InstancePtr == NULL) {
|
|
return XST_FAILURE;
|
|
}
|
|
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
switch (Command) {
|
|
case XFL_DEVCTL_GET_LAST_ERROR:
|
|
Parameters->LastErrorParam.Error =
|
|
DevDataPtr->SR_LastError.Mask32;
|
|
return (XST_SUCCESS);
|
|
|
|
case XFL_DEVCTL_GET_GEOMETRY:
|
|
Parameters->GeometryParam.GeometryPtr =
|
|
&InstancePtr->Geometry;
|
|
return XST_SUCCESS;
|
|
|
|
case XFL_DEVCTL_GET_PROPERTIES:
|
|
Parameters->PropertiesParam.PropertiesPtr =
|
|
&InstancePtr->Properties;
|
|
return XST_SUCCESS;
|
|
|
|
case XFL_DEVCTL_SET_RYBY:
|
|
if (InstancePtr->Properties.PartID.CommandSet !=
|
|
XFL_CMDSET_INTEL_EXTENDED) {
|
|
return (XFLASH_NOT_SUPPORTED);
|
|
}
|
|
|
|
Status = SetRYBY(InstancePtr,
|
|
Parameters->RyByParam.Param);
|
|
return (Status);
|
|
|
|
case XFL_DEVCTL_SET_CONFIG_REG:
|
|
if (InstancePtr->IsPlatformFlash == 1) {
|
|
DevDataPtr->SendCmdSeq(
|
|
InstancePtr->Geometry.BaseAddress,
|
|
Parameters->ConfigRegParam.Value,
|
|
XFL_INTEL_CMD_CONFIG_REG_SETUP,
|
|
XFL_INTEL_CMD_CONFIG_REG_CONFIRM);
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
return (XFLASH_NOT_SUPPORTED);
|
|
|
|
default:
|
|
return (XFLASH_NOT_SUPPORTED);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Retrieves and interprets status register data from part arrays that occupy a
|
|
* 8-bit bus.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return
|
|
* - XFLASH_READY if the flash device is ready.
|
|
* - XFLASH_BUSY if the flash device is Busy.
|
|
* - XFLASH_ERROR if some error has occurred during flash
|
|
* operation.
|
|
*
|
|
* @note No attempt is made to determine the exact cause of an error.
|
|
* Instead that determination is left up to the user.
|
|
*
|
|
******************************************************************************/
|
|
static int GetStatus8(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
u8 RegData;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Sample the register(s).
|
|
*/
|
|
RegData = READ_FLASH_8(InstancePtr->Geometry.BaseAddress + Offset);
|
|
|
|
/*
|
|
* First determine if the device(s) are ready without errors indicated.
|
|
*/
|
|
if (RegData == DevDataPtr->SR_WsmReady.Mask8) {
|
|
return (XFLASH_READY);
|
|
}
|
|
|
|
/*
|
|
* Next determine if the device(s) are still busy.
|
|
*/
|
|
if ((RegData & DevDataPtr->SR_WsmReady.Mask8) !=
|
|
DevDataPtr->SR_WsmReady.Mask8) {
|
|
return (XFLASH_BUSY);
|
|
}
|
|
|
|
/*
|
|
* If control reaches this point, then an error is pending. Copy the
|
|
* entire set of registers to the SR_LastError attribute.
|
|
*/
|
|
DevDataPtr->SR_LastError.Mask8 = RegData;
|
|
|
|
return (XFLASH_ERROR);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Retrieves and interprets status register data from part arrays that occupy a
|
|
* 16-bit bus.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return
|
|
* - XFLASH_READY if the flash device is ready.
|
|
* - XFLASH_BUSY if the flash device is Busy.
|
|
* - XFLASH_ERROR if some error has occurred during flash
|
|
* operation.
|
|
*
|
|
* @note No attempt is made to determine the exact cause of an error.
|
|
* Instead that determination is left up to the user.
|
|
*
|
|
******************************************************************************/
|
|
static int GetStatus16(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
u16 RegData;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Sample the register(s).
|
|
*/
|
|
RegData = READ_FLASH_16(InstancePtr->Geometry.BaseAddress + Offset);
|
|
|
|
/*
|
|
* First determine if the device(s) are ready without errors indicated.
|
|
*/
|
|
if (RegData == DevDataPtr->SR_WsmReady.Mask16) {
|
|
return (XFLASH_READY);
|
|
}
|
|
|
|
/*
|
|
* Next determine if the device(s) are still busy.
|
|
*/
|
|
if ((RegData & DevDataPtr->SR_WsmReady.Mask16) !=
|
|
DevDataPtr->SR_WsmReady.Mask16) {
|
|
return (XFLASH_BUSY);
|
|
}
|
|
|
|
/*
|
|
* If control reaches this point, then an error is pending. Copy the
|
|
* entire set of registers to the SR_LastError attribute.
|
|
*/
|
|
DevDataPtr->SR_LastError.Mask16 = RegData;
|
|
|
|
return (XFLASH_ERROR);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Retrieves and interprets status register data from part arrays that occupy a
|
|
* 32-bit bus.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return
|
|
* - XFLASH_READY if the flash device is ready.
|
|
* - XFLASH_BUSY if the flash device is Busy.
|
|
* - XFLASH_ERROR if some error has occurred during flash
|
|
* operation.
|
|
*
|
|
* @note No attempt is made to determine the exact cause of an error.
|
|
* Instead that determination is left up to the user.
|
|
*
|
|
******************************************************************************/
|
|
static int GetStatus32(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
u32 RegData;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Sample the register(s).
|
|
*/
|
|
RegData = READ_FLASH_32(InstancePtr->Geometry.BaseAddress + Offset);
|
|
|
|
/*
|
|
* First, determine if the device(s) are ready without errors indicated.
|
|
*/
|
|
if (RegData == DevDataPtr->SR_WsmReady.Mask32) {
|
|
return (XFLASH_READY);
|
|
}
|
|
|
|
/*
|
|
* Next, determine if the device(s) are still busy.
|
|
*/
|
|
if ((RegData & DevDataPtr->SR_WsmReady.Mask32) !=
|
|
DevDataPtr->SR_WsmReady.Mask32) {
|
|
return (XFLASH_BUSY);
|
|
}
|
|
|
|
/*
|
|
* If control reaches this point, then an error is pending. Copy the
|
|
* entire set of registers to the SR_LastError attribute.
|
|
*/
|
|
DevDataPtr->SR_LastError.Mask32 = RegData;
|
|
|
|
return (XFLASH_ERROR);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Retrieves and interprets status register data from part arrays that occupy a
|
|
* 64-bit bus.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return
|
|
* - XFLASH_READY if the flash device is ready.
|
|
* - XFLASH_BUSY if the flash device is Busy.
|
|
* - XFLASH_ERROR if some error has occurred during flash
|
|
* operation.
|
|
*
|
|
* @note No attempt is made to determine the exact cause of an error.
|
|
* Instead that determination is left up to the user.
|
|
*
|
|
******************************************************************************/
|
|
static int GetStatus64(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
Xuint64 RegData;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Sample the status register(s) and OR the 32 bit halves together.
|
|
*/
|
|
READ_FLASH_64(InstancePtr->Geometry.BaseAddress + Offset, RegData);
|
|
|
|
/*
|
|
* First, determine if the device(s) are ready without errors indicated.
|
|
*/
|
|
if ((XUINT64_MSW(RegData) == DevDataPtr->SR_WsmReady.Mask32) &&
|
|
(XUINT64_LSW(RegData) == DevDataPtr->SR_WsmReady.Mask32)) {
|
|
return (XFLASH_READY);
|
|
}
|
|
|
|
/*
|
|
* Next, determine if the device(s) are still busy.
|
|
*/
|
|
if (((XUINT64_MSW(RegData) & DevDataPtr->SR_WsmReady.Mask32) !=
|
|
DevDataPtr->SR_WsmReady.Mask32) && ((XUINT64_LSW(RegData)
|
|
& DevDataPtr->SR_WsmReady.
|
|
Mask32) !=
|
|
DevDataPtr->SR_WsmReady.
|
|
Mask32)) {
|
|
return (XFLASH_BUSY);
|
|
}
|
|
|
|
/*
|
|
* If control reaches this point, then an error is pending. Copy the
|
|
* entire set of registers to the SR_LastError attribute.
|
|
*/
|
|
XUINT64_MSW(DevDataPtr->SR_LastError.Mask64) = XUINT64_MSW(RegData);
|
|
XUINT64_LSW(DevDataPtr->SR_LastError.Mask64) = XUINT64_LSW(RegData);
|
|
|
|
return (XFLASH_ERROR);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Polls the status register until the WSM is ready. The device(s) are polled
|
|
* by repeatedly reading the status register.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return - XFLASH_READY if WSM is ready.
|
|
* - XFLASH_ERROR if WSM is ready, but an error condition
|
|
* exists.
|
|
*
|
|
* @note For Intel parts, the status register can be accessed from any
|
|
* addressable location in the bank, in command mode. So we pick
|
|
* the address where operation was performed.
|
|
*
|
|
******************************************************************************/
|
|
static int PollSR8(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
u8 StatusReg;
|
|
u8 ReadyMask;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Wait until WSM indicates that it is complete.
|
|
*/
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask8;
|
|
StatusReg = READ_FLASH_8(InstancePtr->Geometry.BaseAddress + Offset);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_8(InstancePtr->Geometry.BaseAddress +
|
|
Offset);
|
|
}
|
|
|
|
/*
|
|
* WSM is ready, see if an error bit is set.
|
|
*/
|
|
if (StatusReg != ReadyMask) {
|
|
DevDataPtr->SR_LastError.Mask8 = StatusReg;
|
|
return (XFLASH_ERROR);
|
|
}
|
|
else {
|
|
return (XFLASH_READY);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Polls the status register until the WSM is ready. The device(s) are polled
|
|
* by repeatedly reading the status register.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return - XFLASH_READY if WSM is ready.
|
|
* - XFLASH_ERROR if WSM is ready, but an error condition
|
|
* exists.
|
|
*
|
|
* @note For Intel parts, the status register can be accessed from any
|
|
* addressable location in the bank, in command mode. So we pick
|
|
* the address where operation was performed.
|
|
*
|
|
******************************************************************************/
|
|
static int PollSR16(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
u16 StatusReg;
|
|
u16 ReadyMask;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Wait until WSM indicates that it is complete.
|
|
*/
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask16;
|
|
StatusReg = READ_FLASH_16(InstancePtr->Geometry.BaseAddress + Offset);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_16(InstancePtr->Geometry.BaseAddress +
|
|
Offset);
|
|
}
|
|
|
|
/*
|
|
* WSM is ready, see if an error bit is set.
|
|
*/
|
|
if (StatusReg != ReadyMask) {
|
|
DevDataPtr->SR_LastError.Mask16 = StatusReg;
|
|
return (XFLASH_ERROR);
|
|
}
|
|
else {
|
|
return (XFLASH_READY);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Polls the status register until the WSM is ready. The
|
|
* device(s) are polled by repeatedly reading the status register.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return - XFLASH_READY if WSM is ready.
|
|
* - XFLASH_ERROR if WSM is ready, but an error condition
|
|
* exists.
|
|
*
|
|
* @note For Intel parts, the status register can be accessed from any
|
|
* addressable location in the bank, in command mode. So we pick
|
|
* the address where operation was performed.
|
|
*
|
|
******************************************************************************/
|
|
static int PollSR32(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
u32 StatusReg;
|
|
u32 ReadyMask;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Wait until WSM indicates that it is complete.
|
|
*/
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
|
|
StatusReg = READ_FLASH_32(InstancePtr->Geometry.BaseAddress + Offset);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_32(InstancePtr->Geometry.BaseAddress +
|
|
Offset);
|
|
}
|
|
|
|
/*
|
|
* WSM is ready, see if an error bit is set.
|
|
*/
|
|
if (StatusReg != ReadyMask) {
|
|
DevDataPtr->SR_LastError.Mask32 = StatusReg;
|
|
return (XFLASH_ERROR);
|
|
}
|
|
else {
|
|
return (XFLASH_READY);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Polls the status register until the WSM is ready. The device(s) are polled
|
|
* by repeatedly reading the status register.
|
|
*
|
|
* @param InstancePtr is the pointer to the XFlash instance.
|
|
* @param Offset is the offset address in the flash device.
|
|
*
|
|
* @return - XFLASH_READY if WSM is ready.
|
|
* - XFLASH_ERROR if WSM is ready, but an error condition
|
|
* exists.
|
|
*
|
|
* @note For Intel parts, the status register can be accessed from any
|
|
* addressable location in the bank, in command mode. So we pick
|
|
* the address where operation was performed.
|
|
*
|
|
******************************************************************************/
|
|
static int PollSR64(XFlash *InstancePtr, u32 Offset)
|
|
{
|
|
Xuint64 StatusReg;
|
|
u32 ReadyMask;
|
|
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Wait until WSM indicates that it is complete.
|
|
*/
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
|
|
READ_FLASH_64(InstancePtr->Geometry.BaseAddress + Offset, StatusReg);
|
|
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
|
|
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
|
|
READ_FLASH_64(InstancePtr->Geometry.BaseAddress + Offset,
|
|
StatusReg);
|
|
}
|
|
|
|
/*
|
|
* WSM is ready, see if an error bit is set.
|
|
*/
|
|
if ((XUINT64_MSW(StatusReg) != ReadyMask) ||
|
|
(XUINT64_LSW(StatusReg) != ReadyMask)) {
|
|
XUINT64_MSW(DevDataPtr->SR_LastError.Mask64) =
|
|
XUINT64_MSW(StatusReg);
|
|
XUINT64_LSW(DevDataPtr->SR_LastError.Mask64) =
|
|
XUINT64_LSW(StatusReg);
|
|
return (XFLASH_ERROR);
|
|
}
|
|
else {
|
|
return (XFLASH_READY);
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command using a 8-bit bus cycle.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd is the command/data to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmd8(u32 BaseAddress, u32 Offset, u32 Cmd)
|
|
{
|
|
WRITE_FLASH_8(BaseAddress + Offset, Cmd);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command using a 16-bit bus cycle.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd is the command/data to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmd16(u32 BaseAddress, u32 Offset, u32 Cmd)
|
|
{
|
|
WRITE_FLASH_16(BaseAddress + Offset, Cmd);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command using a 32-bit bus cycle.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd is the command/data to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmd32(u32 BaseAddress, u32 Offset, u32 Cmd)
|
|
{
|
|
WRITE_FLASH_32(BaseAddress + Offset, Cmd);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command using a 64-bit bus cycle. Depending on the architecture,
|
|
* this may be a single write or two 32 bit writes.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd is the command/data to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmd64(u32 BaseAddress, u32 Offset, u32 Cmd)
|
|
{
|
|
WRITE_FLASH_64x2(BaseAddress + Offset, Cmd, Cmd);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command sequence using 8-bit bus cycles.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd1 is the first command to write at BaseAddress + Offset
|
|
* @param Cmd2 is the second command to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmdSeq8(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
|
|
{
|
|
WRITE_FLASH_8(BaseAddress + Offset, Cmd1);
|
|
WRITE_FLASH_8(BaseAddress + Offset, Cmd2);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command sequence using 16-bit bus cycles.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd1 is the first command to write at BaseAddress + Offset
|
|
* @param Cmd2 is the second command to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmdSeq16(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
|
|
{
|
|
WRITE_FLASH_16(BaseAddress + Offset, Cmd1);
|
|
WRITE_FLASH_16(BaseAddress + Offset, Cmd2);
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command sequence using 32-bit bus cycles.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd1 is the first command to write at BaseAddress + Offset
|
|
* @param Cmd2 is the second command to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmdSeq32(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
|
|
{
|
|
WRITE_FLASH_32(BaseAddress + Offset, Cmd1);
|
|
WRITE_FLASH_32(BaseAddress + Offset, Cmd2);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Writes a command sequence using 64-bit bus cycles. Depending on the
|
|
* architecture, this may be a single write or two 32 bit writes.
|
|
*
|
|
* @param BaseAddress is the base address of device
|
|
* @param Offset is the offset into device
|
|
* @param Cmd1 is the first command to write at BaseAddress + Offset
|
|
* @param Cmd2 is the second command to write at BaseAddress + Offset
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void SendCmdSeq64(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
|
|
{
|
|
WRITE_FLASH_64x2(BaseAddress + Offset, Cmd1, Cmd1);
|
|
WRITE_FLASH_64x2(BaseAddress + Offset, Cmd2, Cmd2);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Program the device(s) using the faster write to buffer mechanism. The
|
|
* device(s) are programmed in parallel.
|
|
*
|
|
* @param InstancePtr is the instance to work on
|
|
* @param DestPtr is the physical destination address in flash memory
|
|
* space
|
|
* @param SrcPtr is the source data
|
|
* @param Bytes is the number of bytes to program
|
|
*
|
|
* @return
|
|
*
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ERROR if a write error occurred. This error is
|
|
* usually device specific. Use XFlash_DeviceControl() to
|
|
* retrieve specific error conditions. When this error is
|
|
* returned, it is possible that the target address range was
|
|
* only partially programmed.
|
|
*
|
|
* @note
|
|
*
|
|
* This algorithm programs only full buffers at a time and must take care
|
|
* of the following situations:
|
|
* - Partial first buffer programming with pre and/or post padding
|
|
* required.
|
|
* - Multiple full buffer programming.
|
|
* - Partial last buffer programming with post padding.
|
|
* <br><br>
|
|
* When padding, 0xFF is written to each byte to be padded. This in effect does
|
|
* nothing to the current contents of the flash memory and saves us from having
|
|
* to merge real flash data with user data on partial buffer writes.
|
|
* <br><br>
|
|
* If hardware is failing, then this routine could get stuck in an endless loop.
|
|
*
|
|
******************************************************************************/
|
|
static int WriteBuffer8(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u8 *SrcWordPtr = (u8*)SrcPtr;
|
|
u8 *DestWordPtr = (u8*)DestPtr;
|
|
u8 StatusReg;
|
|
u8 ReadyMask;
|
|
u32 BytesLeft = Bytes;
|
|
u32 BaseAddress;
|
|
u32 PartialBytes;
|
|
u32 Count;
|
|
int Status = XST_SUCCESS;
|
|
int Index;
|
|
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BaseAddress = InstancePtr->Geometry.BaseAddress;
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask8;
|
|
|
|
/*
|
|
* Determine if a partial first buffer must be programmed.
|
|
*/
|
|
PartialBytes = (u32) DestWordPtr &
|
|
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
|
|
|
|
/*
|
|
* This write cycle programs the first partial write buffer.
|
|
*/
|
|
if (PartialBytes) {
|
|
/*
|
|
* Backup DestWord to the beginning of a buffer alignment area
|
|
* Count is the number of write cycles left after pre-filling
|
|
* the write buffer with 0xFFFF.
|
|
*/
|
|
DestWordPtr = (u8*)((u32) DestWordPtr - PartialBytes);
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize;
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available. Write number of words to be written (always the
|
|
* maximum).
|
|
*/
|
|
WRITE_FLASH_8(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
|
|
StatusReg = READ_FLASH_8(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_8(DestWordPtr);
|
|
|
|
}
|
|
|
|
WRITE_FLASH_8(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Write 0xFFFF padding until we get to the start of the
|
|
* original DestWord.
|
|
*/
|
|
while (PartialBytes > 1) {
|
|
WRITE_FLASH_8(DestWordPtr++, 0xFFFF);
|
|
PartialBytes -= 1;
|
|
Count--;
|
|
}
|
|
|
|
/*
|
|
* Write the remainder of this write buffer.
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/*
|
|
* Write Byte
|
|
*/
|
|
if (BytesLeft >= 1) {
|
|
WRITE_FLASH_8(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 1;
|
|
}
|
|
|
|
/*
|
|
* End of SrcWords
|
|
*/
|
|
else {
|
|
WRITE_FLASH_8(&DestWordPtr[Index], 0xFF);
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_8(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR8(InstancePtr, ((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination to next buffer
|
|
*/
|
|
SrcWordPtr += Index;
|
|
DestWordPtr += Index;
|
|
}
|
|
|
|
/*
|
|
* At this point DestWordPtr and SrcWordPtr are aligned to a write
|
|
* buffer boundary. The next batch of writes utilize write cycles full
|
|
* of SrcData.
|
|
*/
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize;
|
|
while (BytesLeft >= InstancePtr->Properties.ProgCap.WriteBufferSize) {
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available. Write number of words to be written (always the
|
|
* maximum).
|
|
*/
|
|
WRITE_FLASH_8(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
StatusReg = READ_FLASH_8(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_8(DestWordPtr);
|
|
}
|
|
WRITE_FLASH_8(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer
|
|
*/
|
|
for (Index = 0; Index < Count; Index++) {
|
|
WRITE_FLASH_8(&DestWordPtr[Index], SrcWordPtr[Index]);
|
|
BytesLeft -= 1;
|
|
}
|
|
|
|
/*
|
|
* Send confirmation and wait for status
|
|
*/
|
|
WRITE_FLASH_8(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR8(InstancePtr, ((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination.
|
|
*/
|
|
SrcWordPtr += Count;
|
|
DestWordPtr += Count;
|
|
}
|
|
|
|
/*
|
|
* The last phase is to write a partial last buffer.
|
|
*/
|
|
if (BytesLeft) {
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available. Write number of words to be written (always the
|
|
* maximum).
|
|
*/
|
|
WRITE_FLASH_8(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
|
|
StatusReg = READ_FLASH_8(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_8(DestWordPtr);
|
|
}
|
|
|
|
WRITE_FLASH_8(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/*
|
|
* Write Byte
|
|
*/
|
|
if (BytesLeft >= 1) {
|
|
WRITE_FLASH_8(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 1;
|
|
}
|
|
|
|
/*
|
|
* End of SrcWords
|
|
*/
|
|
else {
|
|
WRITE_FLASH_8(&DestWordPtr[Index], 0xFF);
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_8(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR8(InstancePtr, ((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
}
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Program the device(s) using the faster write to buffer mechanism. The
|
|
* device(s) are programmed in parallel.
|
|
*
|
|
* @param InstancePtr is the instance to work on
|
|
* @param DestPtr is the physical destination address in flash memory
|
|
* space
|
|
* @param SrcPtr is the source data
|
|
* @param Bytes is the number of bytes to program
|
|
*
|
|
* @return
|
|
*
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ERROR if a write error occurred. This error is
|
|
* usually device specific. Use XFlash_DeviceControl() to
|
|
* retrieve specific error conditions. When this error is
|
|
* returned, it is possible that the target address range was
|
|
* only partially programmed.
|
|
* - XFLASH_ALIGNMENT_ERROR if the source and destination pointers
|
|
* are not aligned to a 16-bit word.
|
|
* @note
|
|
*
|
|
* This algorithm programs only full buffers at a time and must take care
|
|
* of the following situations:
|
|
* - Partial first buffer programming with pre and/or post padding
|
|
* required.
|
|
* - Multiple full buffer programming.
|
|
* - Partial last buffer programming with post padding.
|
|
* <br><br>
|
|
* When padding, 0xFF is written to each byte to be padded. This in effect does
|
|
* nothing to the current contents of the flash memory and saves us from having
|
|
* to merge real flash data with user data on partial buffer writes.
|
|
* <br><br>
|
|
* If hardware is failing, then this routine could get stuck in an endless loop.
|
|
*
|
|
******************************************************************************/
|
|
static int WriteBuffer16(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u16 *SrcWordPtr = (u16*)SrcPtr;
|
|
u16 *DestWordPtr = (u16*)DestPtr;
|
|
u16 StatusReg;
|
|
u16 ReadyMask;
|
|
u32 BaseAddress;
|
|
u32 BytesLeft = Bytes;
|
|
u32 PartialBytes;
|
|
u32 Count;
|
|
int Status = XST_SUCCESS;
|
|
int Index;
|
|
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BaseAddress = InstancePtr->Geometry.BaseAddress;
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask16;
|
|
|
|
/*
|
|
* Make sure DestPtr and SrcPtr are aligned to a 16-bit word.
|
|
*/
|
|
if (((int) SrcWordPtr & 1) || ((int) DestWordPtr & 1)) {
|
|
return (XFLASH_ALIGNMENT_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Determine if a partial first buffer must be programmed.
|
|
*/
|
|
PartialBytes = (u32) DestWordPtr &
|
|
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
|
|
|
|
/*
|
|
* This write cycle programs the first partial write buffer.
|
|
*/
|
|
if (PartialBytes) {
|
|
/*
|
|
* Backup DestWord to the beginning of a buffer alignment area
|
|
* Count is the number of write cycles left after pre-filling
|
|
* the write buffer with 0xFFFF.
|
|
*/
|
|
DestWordPtr = (u16*)((u32) DestWordPtr - PartialBytes);
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 1;
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available. Write number of words to be written (always the
|
|
* maximum).
|
|
*/
|
|
WRITE_FLASH_16(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
|
|
StatusReg = READ_FLASH_16(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_16(DestWordPtr);
|
|
|
|
}
|
|
|
|
WRITE_FLASH_16(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Write 0xFFFF padding until we get to the start of the
|
|
* original DestWord.
|
|
*/
|
|
while (PartialBytes > 1) {
|
|
WRITE_FLASH_16(DestWordPtr++, 0xFFFF);
|
|
PartialBytes -= 2;
|
|
Count--;
|
|
}
|
|
|
|
/*
|
|
* Write the remainder of this write buffer.
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/* Full word */
|
|
if (BytesLeft > 1) {
|
|
WRITE_FLASH_16(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 2;
|
|
}
|
|
|
|
/* End of SrcWords */
|
|
else if (BytesLeft == 0) {
|
|
WRITE_FLASH_16(&DestWordPtr[Index], 0xFFFF);
|
|
}
|
|
|
|
/* Partial word */
|
|
else { /* BytesLeft == 1 */
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_16(&DestWordPtr[Index],
|
|
0xFF00 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_16(&DestWordPtr[Index],
|
|
0x00FF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft--;
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_16(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR16(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination to next buffer
|
|
*/
|
|
SrcWordPtr += Index;
|
|
DestWordPtr += Index;
|
|
}
|
|
|
|
/*
|
|
* At this point DestWordPtr and SrcWordPtr are aligned to a write
|
|
* buffer boundary. The next batch of writes utilize write cycles full
|
|
* of SrcData.
|
|
*/
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 1;
|
|
while (BytesLeft > InstancePtr->Properties.ProgCap.WriteBufferSize) {
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available. Write number of words to be written (always the
|
|
* maximum).
|
|
*/
|
|
WRITE_FLASH_16(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
StatusReg = READ_FLASH_16(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_16(DestWordPtr);
|
|
}
|
|
WRITE_FLASH_16(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer
|
|
*/
|
|
for (Index = 0; Index < Count; Index++) {
|
|
WRITE_FLASH_16(&DestWordPtr[Index], SrcWordPtr[Index]);
|
|
BytesLeft -= 2;
|
|
}
|
|
|
|
/*
|
|
* Send confirmation and wait for status
|
|
*/
|
|
WRITE_FLASH_16(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR16(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination.
|
|
*/
|
|
SrcWordPtr += Count;
|
|
DestWordPtr += Count;
|
|
}
|
|
|
|
/*
|
|
* The last phase is to write a partial last buffer.
|
|
*/
|
|
if (BytesLeft) {
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available. Write number of words to be written (always the
|
|
* maximum).
|
|
*/
|
|
WRITE_FLASH_16(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
|
|
StatusReg = READ_FLASH_16(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_16(DestWordPtr);
|
|
}
|
|
|
|
WRITE_FLASH_16(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/*
|
|
* Full word.
|
|
*/
|
|
if (BytesLeft > 1) {
|
|
WRITE_FLASH_16(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 2;
|
|
}
|
|
|
|
/* End of SrcWords */
|
|
else if (BytesLeft == 0) {
|
|
WRITE_FLASH_16(&DestWordPtr[Index], 0xFFFF);
|
|
}
|
|
/* Partial word */
|
|
else { /* BytesLeft == 1 */
|
|
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_16(&DestWordPtr[Index],
|
|
0xFF00 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_16(&DestWordPtr[Index],
|
|
0x00FF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft--;
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_16(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR16(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
}
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Programs the device(s) using the faster write to buffer mechanism. The
|
|
* device(s) are programmed in parallel.
|
|
*
|
|
* @param InstancePtr is the instance to work on
|
|
* @param DestPtr is the physical destination address in flash memory
|
|
* space
|
|
* @param SrcPtr is the source data
|
|
* @param Bytes is the number of bytes to program
|
|
*
|
|
* @return
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ERROR if a write error occurred. This error is
|
|
* usually device specific. Use XFlash_DeviceControl() to
|
|
* retrieve specific error conditions. When this error is
|
|
* returned, it is possible that the target address range was
|
|
* only partially programmed.
|
|
* - XFLASH_ALIGNMENT_ERROR if the source and destination pointers
|
|
* are not aligned to a 16-bit word.
|
|
*
|
|
* @note
|
|
*
|
|
* This algorithm programs only full buffers at a time and must take care
|
|
* of the following situations:
|
|
* - Partial first buffer programming with pre and/or post padding
|
|
* required.
|
|
* - Multiple full buffer programming.
|
|
* - Partial last buffer programming with post padding.
|
|
* <br><br>
|
|
* When padding, 0xFF is written to each byte to be padded. This in effect does
|
|
* nothing to the current contents of the flash memory and saves us from having
|
|
* to merge real flash data with user data on partial buffer writes.
|
|
* <br><br>
|
|
* If hardware is failing, then this routine could get stuck in an endless loop.
|
|
*
|
|
******************************************************************************/
|
|
static int WriteBuffer32(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u32 *SrcWordPtr = (u32*)SrcPtr;
|
|
u32 *DestWordPtr = (u32*)DestPtr;
|
|
u32 StatusReg;
|
|
u32 ReadyMask;
|
|
u32 BaseAddress;
|
|
u32 BytesLeft = Bytes;
|
|
u32 PartialBytes;
|
|
u32 Count;
|
|
int Status = XST_SUCCESS;
|
|
int Index;
|
|
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BaseAddress = InstancePtr->Geometry.BaseAddress;
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
|
|
|
|
/*
|
|
* Make sure DestPtr and SrcPtr are aligned to a 32-bit word.
|
|
*/
|
|
if (((int) SrcWordPtr & 3) || ((int) DestWordPtr & 3)) {
|
|
return (XFLASH_ALIGNMENT_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Determine if a partial first buffer must be programmed.
|
|
*/
|
|
PartialBytes = (u32) DestWordPtr &
|
|
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
|
|
|
|
/*
|
|
* This write cycle programs the first partial write buffer.
|
|
*/
|
|
if (PartialBytes) {
|
|
|
|
/*
|
|
* Backup DestWord to the beginning of a buffer alignment area
|
|
* Count is the number of write cycles left after pre-filling
|
|
* the write buffer with 0xFFFF.
|
|
*/
|
|
DestWordPtr = (u32*)((u32) DestWordPtr - PartialBytes);
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available.
|
|
* Write number of words to be written (always the maximum).
|
|
*/
|
|
WRITE_FLASH_32(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
StatusReg = READ_FLASH_32(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_32(DestWordPtr);
|
|
}
|
|
WRITE_FLASH_32(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Write 0xFFFFFFFF padding until we get to the start of the
|
|
* user data.
|
|
*/
|
|
while (PartialBytes > 3) {
|
|
WRITE_FLASH_32(DestWordPtr++, 0xFFFFFFFF);
|
|
PartialBytes -= 4;
|
|
Count--;
|
|
}
|
|
|
|
/*
|
|
* Write the remainder of this write buffer.
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/* Full word */
|
|
if (BytesLeft > 3) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 4;
|
|
}
|
|
|
|
/* End of SrcWords */
|
|
else if (BytesLeft == 0) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
|
|
}
|
|
|
|
/* Partial word */
|
|
else if (BytesLeft == 1) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFFFF00 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x00FFFFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft--;
|
|
}
|
|
else if (BytesLeft == 2) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFF0000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x0000FFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 2;
|
|
}
|
|
else { /* BytesLeft == 3 */
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFF000000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x000000FF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 3;
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_32(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR32(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination to last access position.
|
|
*/
|
|
SrcWordPtr += Index;
|
|
DestWordPtr += Index;
|
|
}
|
|
|
|
/*
|
|
* At this point DestPtr and SrcPtr are aligned to a write buffer
|
|
* boundary.
|
|
* The next batch of writes utilize a write cycle full of SrcData.
|
|
*/
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
|
|
while (BytesLeft >= InstancePtr->Properties.ProgCap.WriteBufferSize) {
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available.
|
|
* Write number of words to be written (always the maximum).
|
|
*/
|
|
WRITE_FLASH_32(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
StatusReg = READ_FLASH_32(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_32(DestWordPtr);
|
|
}
|
|
|
|
WRITE_FLASH_32(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer.
|
|
*/
|
|
for (Index = 0; Index < Count; Index++) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index], SrcWordPtr[Index]);
|
|
BytesLeft -= 4;
|
|
}
|
|
|
|
/*
|
|
* Send confirmation and wait for status.
|
|
*/
|
|
WRITE_FLASH_32(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR32(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination.
|
|
*/
|
|
SrcWordPtr += Count;
|
|
DestWordPtr += Count;
|
|
}
|
|
|
|
/*
|
|
* The last phase is to write a partial last write buffer.
|
|
*/
|
|
if (BytesLeft) {
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available.
|
|
* Write number of words to be written (always the maximum).
|
|
*/
|
|
WRITE_FLASH_32(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
StatusReg = READ_FLASH_32(DestWordPtr);
|
|
while ((StatusReg & ReadyMask) != ReadyMask) {
|
|
StatusReg = READ_FLASH_32(DestWordPtr);
|
|
}
|
|
WRITE_FLASH_32(DestWordPtr, DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer.
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/*
|
|
* Full word.
|
|
*/
|
|
if (BytesLeft > 3) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 4;
|
|
}
|
|
|
|
/* End of SrcWords */
|
|
else if (BytesLeft == 0) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
|
|
}
|
|
|
|
/* Partial word */
|
|
else if (BytesLeft == 1) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFFFF00 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x00FFFFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft--;
|
|
}
|
|
else if (BytesLeft == 2) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFF0000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x0000FFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 2;
|
|
}
|
|
else { /* BytesLeft == 3 */
|
|
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFF000000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x000000FF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 3;
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_32(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR32(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
}
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Programs the device(s) using the faster write to buffer mechanism. The
|
|
* device(s) are programmed in parallel.
|
|
*
|
|
* @param InstancePtr is the instance to work on.
|
|
* @param DestPtr is the physical destination address in flash memory
|
|
* space.
|
|
* @param SrcPtr is the source data.
|
|
* @param Bytes is the number of bytes to program.
|
|
*
|
|
* @return
|
|
*
|
|
* - XST_SUCCESS if successful.
|
|
* - XFLASH_ERROR if a write error occurred. This error is
|
|
* usually device specific. Use XFlash_DeviceControl() to
|
|
* retrieve specific error conditions. When this error is
|
|
* returned, it is possible that the target address range was
|
|
* only partially programmed.
|
|
* - XFLASH_ALIGNMENT_ERROR if the source and destination pointers
|
|
* are not aligned to a 16-bit word.
|
|
*
|
|
* @note
|
|
*
|
|
* This algorithm programs only full buffers at a time and must take care
|
|
* of the following situations:
|
|
* - Partial first buffer programming with pre and/or post padding
|
|
* required.
|
|
* - Multiple full buffer programming.
|
|
* - Partial last buffer programming with post padding.
|
|
* <br><br>
|
|
* When padding, 0xFF is written to each byte to be padded. This in effect does
|
|
* nothing to the current contents of the flash memory and saves us from having
|
|
* to merge real flash data with user data on partial buffer writes.
|
|
* <br><br>
|
|
* If hardware is failing, then this routine could get stuck in an endless loop.
|
|
*
|
|
******************************************************************************/
|
|
static int WriteBuffer64(XFlash *InstancePtr, void *DestPtr,
|
|
void *SrcPtr, u32 Bytes)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u32 *SrcWordPtr = (u32*)SrcPtr;
|
|
u32 *DestWordPtr = (u32*)DestPtr;
|
|
Xuint64 StatusReg;
|
|
u32 BaseAddress;
|
|
u32 ReadyMask;
|
|
u32 BytesLeft = Bytes;
|
|
u32 PartialBytes;
|
|
u32 Count;
|
|
int Status = XST_SUCCESS;
|
|
int Index;
|
|
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
BaseAddress = InstancePtr->Geometry.BaseAddress;
|
|
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
|
|
|
|
XUINT64_MSW(StatusReg) = 0;
|
|
XUINT64_LSW(StatusReg) = 0;
|
|
|
|
/*
|
|
* Make sure DestPtr and SrcPtr are aligned to a 32-bit word.
|
|
*/
|
|
if (((int) SrcWordPtr & 3) || ((int) DestWordPtr & 3)) {
|
|
return (XFLASH_ALIGNMENT_ERROR);
|
|
}
|
|
|
|
/*
|
|
* Determine if a partial first buffer must be programmed.
|
|
*/
|
|
PartialBytes = (u32) DestWordPtr &
|
|
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
|
|
|
|
/*
|
|
* This write cycle programs the first partial write buffer.
|
|
*/
|
|
if (PartialBytes) {
|
|
/*
|
|
* Backup DestWord to the beginning of a buffer alignment area
|
|
* Count is the number of write cycles left after pre-filling
|
|
* the write buffer with 0xFFFF.
|
|
*/
|
|
DestWordPtr = (u32*)((u32) DestWordPtr - PartialBytes);
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available.
|
|
* Write number of words to be written (always the maximum)
|
|
*/
|
|
WRITE_FLASH_64x2(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
READ_FLASH_64(DestWordPtr, StatusReg);
|
|
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
|
|
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
|
|
READ_FLASH_64(DestWordPtr, StatusReg);
|
|
}
|
|
WRITE_FLASH_64x2(DestWordPtr, DevDataPtr->WriteBufferWordCount,
|
|
DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Write 0xFFFFFFFF padding until we get to the start of the
|
|
* user data
|
|
*/
|
|
while (PartialBytes > 3) {
|
|
WRITE_FLASH_32(DestWordPtr++, 0xFFFFFFFF);
|
|
PartialBytes -= 4;
|
|
Count--;
|
|
}
|
|
|
|
/*
|
|
* Write the remainder of this write buffer
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/* Full word */
|
|
if (BytesLeft > 3) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 4;
|
|
}
|
|
|
|
/* End of SrcWords */
|
|
else if (BytesLeft == 0) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
|
|
}
|
|
|
|
/* Partial word */
|
|
else if (BytesLeft == 1) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFFFF00 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x00FFFFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft--;
|
|
}
|
|
else if (BytesLeft == 2) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFF0000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x0000FFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 2;
|
|
}
|
|
else { /* BytesLeft == 3 */
|
|
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFF000000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x000000FF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 3;
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_64x2((u32) DestWordPtr & ~7,
|
|
XFL_INTEL_CMD_CONFIRM, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR64(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination to last access position
|
|
*/
|
|
SrcWordPtr += Index;
|
|
DestWordPtr += Index;
|
|
}
|
|
|
|
/*
|
|
* At this point DestPtr and SrcPtr are aligned to a write buffer
|
|
* boundary.
|
|
* The next batch of writes utilize a write cycle full of SrcData
|
|
*/
|
|
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
|
|
while (BytesLeft >= InstancePtr->Properties.ProgCap.WriteBufferSize) {
|
|
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available.
|
|
* Write number of words to be written (always the maximum)
|
|
*/
|
|
WRITE_FLASH_64x2(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
|
|
READ_FLASH_64(DestWordPtr, StatusReg);
|
|
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
|
|
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
|
|
READ_FLASH_64(DestWordPtr, StatusReg);
|
|
}
|
|
WRITE_FLASH_64x2(DestWordPtr, DevDataPtr->WriteBufferWordCount,
|
|
DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer.
|
|
*/
|
|
for (Index = 0; Index < Count; Index++) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index], SrcWordPtr[Index]);
|
|
BytesLeft -= 4;
|
|
}
|
|
|
|
/*
|
|
* Send confirmation and wait for status.
|
|
*/
|
|
WRITE_FLASH_64x2((u32) DestWordPtr & ~7,
|
|
XFL_INTEL_CMD_CONFIRM, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR64(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
|
|
/*
|
|
* Increment source and destination.
|
|
*/
|
|
SrcWordPtr += Count;
|
|
DestWordPtr += Count;
|
|
}
|
|
|
|
/*
|
|
* The last phase is to write a partial last write buffer.
|
|
*/
|
|
if (BytesLeft) {
|
|
/*
|
|
* Send command to write buffer. Wait for buffer to become
|
|
* available.
|
|
* Write number of words to be written (always the maximum).
|
|
*/
|
|
WRITE_FLASH_64x2(DestWordPtr,
|
|
InstancePtr->Command.WriteBufferCommand,
|
|
InstancePtr->Command.WriteBufferCommand);
|
|
|
|
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
|
|
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
|
|
READ_FLASH_64(DestWordPtr, StatusReg);
|
|
}
|
|
WRITE_FLASH_64x2(DestWordPtr, DevDataPtr->WriteBufferWordCount,
|
|
DevDataPtr->WriteBufferWordCount);
|
|
|
|
/*
|
|
* Fill the buffer.
|
|
*/
|
|
Index = 0;
|
|
while (Count--) {
|
|
/*
|
|
* Full word.
|
|
*/
|
|
if (BytesLeft > 3) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
SrcWordPtr[Index]);
|
|
BytesLeft -= 4;
|
|
}
|
|
|
|
/* End of SrcWords. */
|
|
else if (BytesLeft == 0) {
|
|
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
|
|
}
|
|
|
|
/* Partial word. */
|
|
else if (BytesLeft == 1) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFFFF00 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x00FFFFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft--;
|
|
}
|
|
else if (BytesLeft == 2) {
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFFFF0000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x0000FFFF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 2;
|
|
}
|
|
else { /* BytesLeft == 3. */
|
|
|
|
#ifdef XPAR_AXI_EMC
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0xFF000000 | SrcWordPtr[Index]);
|
|
#else
|
|
WRITE_FLASH_32(&DestWordPtr[Index],
|
|
0x000000FF | SrcWordPtr[Index]);
|
|
#endif
|
|
BytesLeft -= 3;
|
|
}
|
|
Index++;
|
|
}
|
|
|
|
/*
|
|
* Buffer write completed. Send confirmation command and wait
|
|
* for completion.
|
|
*/
|
|
WRITE_FLASH_64x2((u32) DestWordPtr & ~7,
|
|
XFL_INTEL_CMD_CONFIRM, XFL_INTEL_CMD_CONFIRM);
|
|
Status = PollSR64(InstancePtr,
|
|
((u32)DestWordPtr) - BaseAddress);
|
|
if (Status != XFLASH_READY) {
|
|
return (Status);
|
|
}
|
|
}
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Reads and interprets part identification data.
|
|
*
|
|
* @param InstancePtr is the instance to work on.
|
|
*
|
|
* @return None.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static void GetPartID(XFlash *InstancePtr)
|
|
{
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u32 CmdAddress;
|
|
void *Ptr;
|
|
u8 Interleave;
|
|
u8 Mode;
|
|
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
CmdAddress = InstancePtr->Geometry.BaseAddress;
|
|
Interleave = (InstancePtr->Geometry.MemoryLayout &
|
|
XFL_LAYOUT_CFI_INTERL_MASK) >> 24;
|
|
Mode = (InstancePtr->Geometry.MemoryLayout &
|
|
XFL_LAYOUT_PART_MODE_MASK) >> 8;
|
|
|
|
/*
|
|
* Send Read id codes command.
|
|
*/
|
|
DevDataPtr->SendCmd(CmdAddress, 8,
|
|
XFL_INTEL_CMD_READ_ID_CODES);
|
|
|
|
/*
|
|
* Retrieve Manufacturer ID located at word offset 0.
|
|
*/
|
|
XFL_CFI_POSITION_PTR(Ptr, CmdAddress, Interleave, 0);
|
|
InstancePtr->Properties.PartID.ManufacturerID =
|
|
XFlashCFI_Read8((u8*)Ptr, Interleave, Mode);
|
|
|
|
/*
|
|
* Retrieve Device Code located at word offset 1.
|
|
*/
|
|
XFL_CFI_ADVANCE_PTR8(Ptr, Interleave);
|
|
InstancePtr->Properties.PartID.DeviceID =
|
|
XFlashCFI_Read8((u8*)Ptr, Interleave, Mode);
|
|
|
|
/*
|
|
* Place device(s) back into read-array mode.
|
|
*/
|
|
(void) XFlashIntel_Reset(InstancePtr);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Sets the RYBY control signal.
|
|
*
|
|
* @param InstancePtr is the instance to work on.
|
|
* @param Mode is the mode to set the RYBY signal to.
|
|
*
|
|
* @return
|
|
*
|
|
* - XST_SUCCESS if the mode was successfully
|
|
* changed.
|
|
* - XFLASH_NOT_SUPPORTED if the mode given is
|
|
* unknown/unsupported.
|
|
*
|
|
* @note None.
|
|
*
|
|
******************************************************************************/
|
|
static int SetRYBY(XFlash *InstancePtr, u32 Mode)
|
|
{
|
|
u32 Cmd;
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
|
|
/*
|
|
* Determine which command code to use.
|
|
*/
|
|
switch (Mode) {
|
|
case XFL_INTEL_RYBY_PULSE_OFF:
|
|
Cmd = XFL_INTEL_CONFIG_RYBY_LEVEL;
|
|
break;
|
|
|
|
case XFL_INTEL_RYBY_PULSE_ON_ERASE:
|
|
Cmd = XFL_INTEL_CONFIG_RYBY_PULSE_ERASE;
|
|
break;
|
|
|
|
case XFL_INTEL_RYBY_PULSE_ON_PROG:
|
|
Cmd = XFL_INTEL_CONFIG_RYBY_PULSE_WRITE;
|
|
break;
|
|
|
|
case XFL_INTEL_RYBY_PULSE_ON_ERASE_PROG:
|
|
Cmd = XFL_INTEL_CONFIG_RYBY_PULSE_ALL;
|
|
break;
|
|
|
|
default:
|
|
return (XFLASH_NOT_SUPPORTED);
|
|
}
|
|
|
|
/*
|
|
* Send the command to the devices.
|
|
*/
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
DevDataPtr->SendCmdSeq(InstancePtr->Geometry.BaseAddress, 0,
|
|
XFL_INTEL_CMD_CONFIG, Cmd);
|
|
|
|
return (XST_SUCCESS);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/**
|
|
*
|
|
* Sends commands to erase blocks.
|
|
*
|
|
* @param InstancePtr is the pointer to xflash object to work on.
|
|
* @param Region is the region which the first block appears.
|
|
* @param Block is the starting block to erase.
|
|
* @param MaxBlocks is the number of consecutive blocks to erase.
|
|
*
|
|
* @return The number of blocks enqueued to the part's erase buffer.
|
|
* Region and Block parameters are incremented the number of blocks
|
|
* queued.
|
|
*
|
|
* @note Limitation: Only support enqueuing one block at a time.
|
|
*
|
|
******************************************************************************/
|
|
static u16 EnqueueEraseBlocks(XFlash *InstancePtr, u16 *Region,
|
|
u16 *Block, u16 MaxBlocks)
|
|
{
|
|
XFlashGeometry *GeomPtr;
|
|
XFlashVendorData_Intel *DevDataPtr;
|
|
u32 BlockAddress;
|
|
|
|
/*
|
|
* If for some reason the maximum number of blocks to enqueue is
|
|
* zero, then don't do anything.
|
|
*/
|
|
if (MaxBlocks == 0) {
|
|
return (0);
|
|
}
|
|
|
|
GeomPtr = &InstancePtr->Geometry;
|
|
DevDataPtr = GET_PARTDATA(InstancePtr);
|
|
|
|
/*
|
|
* Get the physical address to write the command to and send command.
|
|
*/
|
|
(void) XFlashGeometry_ToAbsolute(GeomPtr, *Region, *Block, 0,
|
|
&BlockAddress);
|
|
DevDataPtr->SendCmdSeq(GeomPtr->BaseAddress, BlockAddress,
|
|
XFL_INTEL_CMD_BLOCK_ERASE,
|
|
XFL_INTEL_CMD_CONFIRM);
|
|
|
|
/*
|
|
* Increment Region/Block.
|
|
*/
|
|
XFL_GEOMETRY_INCREMENT(GeomPtr, *Region, *Block);
|
|
|
|
/*
|
|
* Return the number of blocks enqueued.
|
|
*/
|
|
return (1);
|
|
}
|
|
|
|
#endif /* XPAR_XFL_DEVICE_FAMILY_INTEL */
|