embeddedsw/lib/sw_services/xilflash/src/xilflash_intel.c
Jagannadha Sutradharudu Teki 2c8f92039d embeddesw: Add initial code support
Added initial support Xilinx Embedded Software.

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
2014-06-24 16:45:01 +05:30

2973 lines
82 KiB
C
Executable file

/******************************************************************************
*
* Copyright (C) 2007 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xilflash_intel.c
*
* This file implements the Intel CFI Version of the XFlash Library.
*
* @note
*
* - Special consideration has to be given to varying data bus widths. To boost
* performance, multiple devices in parallel on the data bus are accessed
* in parallel. Therefore to reduce complexity and increase performance,
* many local primitive functions are duplicated with the only difference
* being the width of writes to the devices.
* <br><br>
* Even with the performance boosting optimizations, the overhead
* associated is rather high due to the general purpose nature of its
* design.
* <br><br>
* Flash block erasing is a time consuming operation with nearly all
* latency occurring due to the devices' themselves. It takes on the order
* of 1 second to erase each block.
* <br><br>
* Writes by comparison are much quicker so library overhead becomes an
* issue.
* The write algorithm has been optimized for bulk data programming and
* should provide relatively better performance.
* - The code/comments refers to WSM frequently. This stands for Write State
* Machine. WSM is the internal programming engine of the devices.
* - This library and the underlying Intel flash memory does not allow re-
* programming while code is executing from the same memory.
* - If hardware is flakey or fails, then this library could hang a thread of
* execution.
*
* <pre>
*
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a rmm 10/25/07 First release
* 1.00a mta 10/25/07 Updated to flash library
* 1.01a ksu 04/10/08 Added support for AMD CFI Interface
* 1.02a ksu 06/16/09 Added support for multiple banks in Intel flash
* Added Reset Bank function
* Added support for 0xF0 reset command
* Added support for Xilinx Platform Flash XL.
* Added XFL_DEVCTL_SET_CONFIG_REG IOCTL to write to the
* Configuration Register of the Xilinx Platform Flash XL
* which can be used to set the Flash in Sync/Async mode.
* The Xilinx Platform Flash XL is set to Async mode during
* the initialization of the library.
* Added bank(s) reset function at the top of the read
* function.
* Updated Lock and Unlock operations for multiple blocks.
* 1.03a ksu 10/07/09 Added support for large buffer size flash (CR535564)
* 3.01a srt 03/02/12 Added support for Micron G18 Flash device to fix
* CRs 648372, 648282.
* Modified XFlashIntel_Reset function to reset all the
* partitions.
* 3.02a srt 05/30/12 Changed Implementation for Micron G18 Flash, which
* fixes the CR 662317.
* CR 662317 Description - Xilinx Platform Flash on ML605
* fails to work.
* 3.03a srt 11/04/12 Fixed CR 679937 -
* Description: Non-word aligned data write to flash fails
* with AXI interface.
* </pre>
*
******************************************************************************/
/***************************** Include Files *********************************/
#include "include/xilflash.h"
#ifdef XPAR_XFL_DEVICE_FAMILY_INTEL
#include "include/xilflash_intel.h"
#include "include/xilflash_cfi.h"
/************************** Constant Definitions *****************************/
/**************************** Type Definitions *******************************/
/*
* Define a single type used to access the status register irregardless of the
* width of the devices
*/
typedef union {
u8 Mask8;
u16 Mask16;
u32 Mask32;
Xuint64 Mask64;
} StatReg;
/*
* Define Intel specific data to be part of the instance. This structure will
* overlay the XFlash_PartData structure attribute of the base class.
*/
typedef struct XFlashVendorData_IntelTag {
u32 WriteBufferWordCount; /* This value is written to the WSM when
telling it how many words will be
programmed (always will be the
maximum
allowed) */
StatReg SR_WsmReady; /* Status register bitmask for WSM ready */
StatReg SR_LastError; /* Status register bitmask for error condition */
/*
* The following functions are specific to the width of the data bus and
* will be assigned during initialization.
*
* SendCmd - Writes a single command to the devices.
* SendCmdSeq - Writes two commands in successive bus cycles to the
* devices.
* WriteBuffer - Programming algorithm optimized to perform bulk writes
* to devices.
* GetStatus - Retrieve and interpret the status registers of the
* devices
* PollSR - Poll the status register of the devices until the WSM
* signals ready.
*/
void (*SendCmd) (u32 BaseAddr, u32 Offset, u32 Cmd);
void (*SendCmdSeq) (u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
int (*WriteBuffer) (XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes);
int (*GetStatus) (XFlash *InstancePtr, u32 Offset);
int (*PollSR) (XFlash *InstancePtr, u32 Offset);
} XFlashVendorData_Intel;
/***************** Macros (Inline Functions) Definitions *********************/
/*****************************************************************************
* GET_PARTDATA - Type safe way to convert the base component VendorData type
* to the family specific VendorData_Intel type.
*
* Macro signature:
*
* XFlashVendorData_Intel *GET_PARTDATA(XFlash_PartData *BaseComponent)
*****************************************************************************/
#define GET_PARTDATA(BaseComponent) \
((XFlashVendorData_Intel*)&((BaseComponent)->VendorData))
/************************** Function Prototypes ******************************/
static void SendCmd8(u32 BaseAddr, u32 Offset, u32 Cmd);
static void SendCmd16(u32 BaseAddr, u32 Offset, u32 Cmd);
static void SendCmd32(u32 BaseAddr, u32 Offset, u32 Cmd);
static void SendCmd64(u32 BaseAddr, u32 Offset, u32 Cmd);
static void SendCmdSeq8(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
static void SendCmdSeq16(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
static void SendCmdSeq32(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
static void SendCmdSeq64(u32 BaseAddr, u32 Offset, u32 Cmd1, u32 Cmd2);
static int GetStatus8(XFlash *InstancePtr, u32 Offset);
static int GetStatus16(XFlash *InstancePtr, u32 Offset);
static int GetStatus32(XFlash *InstancePtr, u32 Offset);
static int GetStatus64(XFlash *InstancePtr, u32 Offset);
static int WriteBuffer8(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes);
static int WriteBuffer16(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes);
static int WriteBuffer32(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes);
static int WriteBuffer64(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes);
static int PollSR8(XFlash *InstancePtr, u32 Offset);
static int PollSR16(XFlash *InstancePtr, u32 Offset);
static int PollSR32(XFlash *InstancePtr, u32 Offset);
static int PollSR64(XFlash *InstancePtr, u32 Offset);
static int SetRYBY(XFlash *InstancePtr, u32 Mode);
static void GetPartID(XFlash *InstancePtr);
static int XFlashIntel_ResetBank(XFlash *InstancePtr, u32 Offset, u32 Bytes);
static u16 EnqueueEraseBlocks(XFlash *InstancePtr, u16 *RegionPtr,
u16 *BlockPtr, u16 MaxBlocks);
extern int XFlashGeometry_ToBlock(XFlashGeometry *InstancePtr,
u32 AbsoluteOffset,
u16 *Region, u16 *Block, u32 *BlockOffset);
extern int XFlashGeometry_ToAbsolute(XFlashGeometry *InstancePtr,
u16 Region,
u16 Block,
u32 BlockOffset, u32 *AbsoluteOffsetPtr);
/************************** Variable Definitions *****************************/
/*****************************************************************************/
/**
*
* Initializes a XFlash instance with device family specific details. The
* initialization entails:
*
* - Assign part access primitive functions depending on bus width.
* - Reset the device.
*
* @param InstancePtr is a pointer to the XFlash instance.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_PART_NOT_SUPPORTED if the command set algorithm or
* Layout is not supported by any specific flash device family
* compiled into the system.
* - XST_FAILURE if error.
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Initialize(XFlash *InstancePtr)
{
XFlashVendorData_Intel *DevDataPtr;
u32 Layout;
int BusWidthBytes;
/*
* Verify inputs are valid
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
/*
* Grab layout and get Vendor specific part information
*/
Layout = InstancePtr->Geometry.MemoryLayout;
DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Setup alignment of the write buffer.
*/
if (InstancePtr->Properties.ProgCap.WriteBufferSize != NULL) {
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask =
InstancePtr->Properties.ProgCap.WriteBufferSize - 1;
}
/*
* Setup layout dependent attributes. These include:
* - Part access primitive functions optimized for a specific bus
* width.
* - SR_WsmRead.MaskX is set according to the SR_WSM_READY constant
* defined as 0x80. We don't use that constant here because it is
* simpler to define with a magic number rather than use complex
* masks and shifting operations.
*/
switch (Layout) {
case XFL_LAYOUT_X16_X8_X1:
DevDataPtr->SR_WsmReady.Mask8 = 0x80;
DevDataPtr->GetStatus = GetStatus8;
DevDataPtr->SendCmd = SendCmd8;
DevDataPtr->SendCmdSeq = SendCmdSeq8;
DevDataPtr->PollSR = PollSR8;
DevDataPtr->WriteBuffer = WriteBuffer8;
break;
case XFL_LAYOUT_X16_X16_X1:
DevDataPtr->SR_WsmReady.Mask16 = 0x0080;
DevDataPtr->GetStatus = GetStatus16;
DevDataPtr->SendCmd = SendCmd16;
DevDataPtr->SendCmdSeq = SendCmdSeq16;
DevDataPtr->PollSR = PollSR16;
DevDataPtr->WriteBuffer = WriteBuffer16;
break;
case XFL_LAYOUT_X16_X16_X2:
DevDataPtr->SR_WsmReady.Mask32 = 0x00800080;
DevDataPtr->GetStatus = GetStatus32;
DevDataPtr->SendCmd = SendCmd32;
DevDataPtr->SendCmdSeq = SendCmdSeq32;
DevDataPtr->PollSR = PollSR32;
DevDataPtr->WriteBuffer = WriteBuffer32;
break;
case XFL_LAYOUT_X16_X16_X4:
DevDataPtr->SR_WsmReady.Mask32 = 0x00800080;
DevDataPtr->GetStatus = GetStatus64;
DevDataPtr->SendCmd = SendCmd64;
DevDataPtr->SendCmdSeq = SendCmdSeq64;
DevDataPtr->PollSR = PollSR64;
DevDataPtr->WriteBuffer = WriteBuffer64;
break;
default:
return (XFLASH_PART_NOT_SUPPORTED);
}
/*
* Calculate data written during a buffer write that tells the buffer
* how many words are going to be written to the buffer. This value is
* based on ProgCap.WriteBufferSize which was taken from the standard
* CFI query at offset 2Ah. Dividing this value by the width of the data
* bus gives us the maximum number of writes to the buffer per Intel
* literature.
*/
BusWidthBytes = (Layout & XFL_LAYOUT_NUM_PARTS_MASK) *
((Layout & XFL_LAYOUT_PART_MODE_MASK) >> 8);
DevDataPtr->WriteBufferWordCount =
(InstancePtr->Properties.ProgCap.WriteBufferSize /
BusWidthBytes) - 1;
/*
* Get part ID.
*/
GetPartID(InstancePtr);
/*
* Reset the part.
*/
(void) XFlashIntel_Reset(InstancePtr);
/*
* Zero out error data and return.
*/
XUINT64_MSW(DevDataPtr->SR_LastError.Mask64) = 0;
XUINT64_LSW(DevDataPtr->SR_LastError.Mask64) = 0;
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* The routine reads the data from the Intel flash device and copies it into
* user buffer.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset into the device(s) address space from
* which to read.
* @param Bytes is the number of bytes to copy.
* @param DestPtr is the destination address to copy data to.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_ADDRESS_ERROR if the source address does not start
* within the addressable areas of the device(s).
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Read(XFlash *InstancePtr, u32 Offset, u32 Bytes, void *DestPtr)
{
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
if(DestPtr == NULL) {
return XST_FAILURE;
}
/*
* Check to make sure start address is within the device.
*/
if (!XFL_GEOMETRY_IS_ABSOLUTE_VALID(&InstancePtr->Geometry, Offset)) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Reset the bank(s) so that it returns to the read mode.
*/
if (XFlashIntel_ResetBank(InstancePtr, Offset, Bytes)!= XST_SUCCESS) {
return (XST_FAILURE);
}
/*
* Perform copy to the user buffer from the buffer.
*/
memcpy(DestPtr, (void *) (InstancePtr->Geometry.BaseAddress + Offset),
Bytes);
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Programs the Intel flash device with data stored in the user buffer.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset into the device(s) address space from which
* to begin programming. Must be aligned to the width of the
* flash's data bus.
* @param Bytes is the number of bytes to program.
* @param SrcPtr is the source address containing data to be programmed.
* Must be aligned to the width of the flash's data bus.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_ERROR if a write error occurred. This error is
* usually device specific. Use XFlash_DeviceControl() to
* retrieve specific error conditions. When this error is
* returned, it is possible that the target address range was
* only partially programmed.
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Write(XFlash *InstancePtr, u32 Offset, u32 Bytes, void *SrcPtr)
{
XFlashVendorData_Intel *DevDataPtr;
int Status;
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
if(SrcPtr == NULL) {
return XST_FAILURE;
}
/*
* Nothing specified to be programmed.
*/
if (Bytes == 0) {
return (XST_SUCCESS);
}
/*
* Verify the address range is within the part.
*/
if (!XFL_GEOMETRY_IS_ABSOLUTE_VALID(&InstancePtr->Geometry, Offset) ||
!XFL_GEOMETRY_IS_ABSOLUTE_VALID(&InstancePtr->Geometry,
Offset + Bytes - 1)) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Call the proper write buffer function.
*/
DevDataPtr = GET_PARTDATA(InstancePtr);
Status = DevDataPtr->WriteBuffer(InstancePtr, (void *)
(InstancePtr->Geometry.BaseAddress +
Offset), SrcPtr, Bytes);
/*
* Reset the bank(s) so that it returns to the read mode.
*/
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
return (Status);
}
/*****************************************************************************/
/**
*
* Erases the specified address range in the Intel Flash device.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset into the device(s) address space from which
* to begin erasure.
* @param Bytes is the number of bytes to erase.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_ADDRESS_ERROR if the destination address range is
* not completely within the addressable areas of the device(s).
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Erase(XFlash *InstancePtr, u32 Offset, u32 Bytes)
{
u16 StartRegion, EndRegion;
u16 StartBlock, EndBlock;
u16 BlocksLeft, BlocksQueued;
u32 Dummy;
XFlashGeometry *GeomPtr;
XFlashVendorData_Intel *DevDataPtr;
int Status;
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
GeomPtr = &InstancePtr->Geometry;
/*
* Handle case when zero bytes is provided.
*/
if (Bytes == 0) {
return (XST_SUCCESS);
}
/*
* Convert the starting address to block coordinates. This also verifies
* the starting address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &StartRegion,
&StartBlock, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Convert the ending address to block coordinates. This also verifies
* the ending address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset + Bytes - 1,
&EndRegion, &EndBlock, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Erase loop. Queue up as many blocks at a time until all are erased.
*/
DevDataPtr = GET_PARTDATA(InstancePtr);
BlocksLeft = XFL_GEOMETRY_BLOCK_DIFF(GeomPtr, StartRegion, StartBlock,
EndRegion, EndBlock);
while (BlocksLeft > 0) {
BlocksQueued = EnqueueEraseBlocks(InstancePtr, &StartRegion,
&StartBlock, BlocksLeft);
BlocksLeft -= BlocksQueued;
Status = DevDataPtr->PollSR(InstancePtr, Offset);
if (Status != XFLASH_READY) {
(void) XFlashIntel_ResetBank(InstancePtr, Offset,
Bytes);
return (Status);
}
}
/*
* Reset the bank(s) so that it returns to the read mode.
*/
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Locks the blocks in the specified range of the Intel flash device.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset into the device(s) address space from which
* to begin block locking. The first three bytes of every block is
* reserved for special purpose. The offset should be atleast three
* bytes from start of the block.
* @param Bytes indicates the number of bytes to Lock in the Block
* starting from Offset.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_ADDRESS_ERROR if the destination address range is
* not completely within the addressable areas of the device(s).
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Lock(XFlash *InstancePtr, u32 Offset, u32 Bytes)
{
volatile u16 StatusReg;
XFlashVendorData_Intel *DevDataPtr;
u16 StartRegion, EndRegion;
u16 StartBlock, EndBlock;
u16 Region, Block;
u16 BlocksLeft;
u32 Dummy;
u32 BaseAddress;
u32 BlockAddress;
int Status;
XFlashGeometry *GeomPtr;
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
GeomPtr = &InstancePtr->Geometry;
BaseAddress = GeomPtr->BaseAddress;
/*
* Handle case when zero bytes is provided.
*/
if (Bytes == 0) {
/*
* Lock 1 block (for backward compatibility)
*/
Bytes = 1;
}
/*
* Convert the starting address to block coordinates. This also verifies
* the starting address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &StartRegion,
&StartBlock, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Convert the ending address to block coordinates. This also verifies
* the ending address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset + Bytes - 1,
&EndRegion, &EndBlock, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Find total number of blocks to be locked.
*/
DevDataPtr = GET_PARTDATA(InstancePtr);
BlocksLeft = XFL_GEOMETRY_BLOCK_DIFF(GeomPtr, StartRegion, StartBlock,
EndRegion, EndBlock);
/*
* Sample the register(s). Wait till the device is ready.
*/
DevDataPtr->SendCmd(BaseAddress, Offset, XFL_INTEL_CMD_READ_STATUS_REG);
StatusReg = READ_FLASH_16(BaseAddress + Offset);
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
StatusReg = READ_FLASH_8(BaseAddress + Offset);
}
Region = StartRegion;
Block = StartBlock;
while (BlocksLeft > 0) {
/*
* Find the block address.
*/
(void) XFlashGeometry_ToAbsolute(GeomPtr, Region, Block, 0,
&BlockAddress);
/*
* Clear any latched status register content.
*/
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_CLEAR_STATUS_REG);
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_LOCK_BLOCK_SET);
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_LOCK_BLOCK_SET_CONFIRM);
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_READ_STATUS_REG);
/*
* Check if the Locking is done and device is ready.
*/
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
}
/*
* Check if any Lock error has occurred.
*/
if(StatusReg & XFL_INTEL_SR_PROG_OR_LOCK_ERROR) {
return XST_FAILURE;
}
/*
* Increment Region/Block.
*/
XFL_GEOMETRY_INCREMENT(GeomPtr, Region, Block);
BlocksLeft--;
}
/*
* Reset the bank(s) so that it returns to the read mode.
*/
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Unlocks the blocks in the specified range of the Intel flash device.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset into the device(s) address space from which
* to begin block UnLocking. The first three bytes of every block
* is reserved for special purpose. The offset should be atleast
* three bytes from start of the block.
* @param Bytes indicates the number of bytes to UnLock in the Block
* starting from Offset.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_ADDRESS_ERROR if the destination address range is
* not completely within the addressable areas of the device(s).
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Unlock(XFlash *InstancePtr, u32 Offset, u32 Bytes)
{
volatile u16 StatusReg;
XFlashVendorData_Intel *DevDataPtr;
u16 StartRegion, EndRegion;
u16 StartBlock, EndBlock;
u16 Region, Block;
u16 BlocksLeft;
u32 Dummy;
u32 BaseAddress;
u32 BlockAddress;
int Status;
XFlashGeometry *GeomPtr;
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
GeomPtr = &InstancePtr->Geometry;
BaseAddress = GeomPtr->BaseAddress;
/*
* Handle case when zero bytes is provided.
*/
if (Bytes == 0) {
/*
* Unlock 1 block (for backward compatibility)
*/
Bytes = 1;
}
/*
* Convert the starting address to block coordinates. This also verifies
* the starting address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &StartRegion,
&StartBlock, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Convert the ending address to block coordinates. This also verifies
* the ending address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset + Bytes - 1,
&EndRegion, &EndBlock, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
/*
* Find total number of blocks to be unlocked.
*/
DevDataPtr = GET_PARTDATA(InstancePtr);
BlocksLeft = XFL_GEOMETRY_BLOCK_DIFF(GeomPtr, StartRegion, StartBlock,
EndRegion, EndBlock);
/*
* Sample the register(s). Wait till the device is ready.
*/
DevDataPtr->SendCmd(BaseAddress, Offset, XFL_INTEL_CMD_READ_STATUS_REG);
StatusReg = READ_FLASH_16(BaseAddress + Offset);
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
StatusReg = READ_FLASH_8(BaseAddress + Offset);
}
Region = StartRegion;
Block = StartBlock;
while (BlocksLeft > 0) {
/*
* Find the block address.
*/
(void) XFlashGeometry_ToAbsolute(GeomPtr, Region, Block, 0,
&BlockAddress);
/*
* Clear any latched status register content.
*/
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_CLEAR_STATUS_REG);
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_LOCK_BLOCK_CLEAR);
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_LOCK_BLOCK_CLEAR_CONFIRM);
DevDataPtr->SendCmd(BaseAddress, BlockAddress,
XFL_INTEL_CMD_READ_STATUS_REG);
/*
* Check if the Unlocking is done and device is ready.
*/
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
while(!(StatusReg & XFL_INTEL_SR_WSM_READY)) {
StatusReg = READ_FLASH_16(BaseAddress + BlockAddress);
}
/*
* Check if any Unlock error has occurred.
*/
if(StatusReg & XFL_INTEL_SR_ERASE_OR_UNLOCK_ERROR) {
return XST_FAILURE;
}
/*
* Increment Region/Block.
*/
XFL_GEOMETRY_INCREMENT(GeomPtr, Region, Block);
BlocksLeft--;
}
/*
* Reset the bank(s) so that it returns to the read mode.
*/
(void) XFlashIntel_ResetBank(InstancePtr, Offset, Bytes);
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Clears the Intel flash device status register(s) and place the device(s) into
* read mode.
*
* @param InstancePtr is the pointer to the XFlash instance.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_BUSY if the flash devices were in the middle of an
* operation and could not be reset.
* - XFLASH_ERROR if the device(s) have experienced an internal
* error during the operation. XFlash_DeviceControl() must be
* used to access the cause of the device specific error
* condition.
*
* @note None.
*
******************************************************************************/
int XFlashIntel_Reset(XFlash *InstancePtr)
{
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
/*
* Send reset for all region/bank(s) in the device.
*/
return (XFlashIntel_ResetBank(InstancePtr, 0,
InstancePtr->Geometry.DeviceSize));
}
/*****************************************************************************/
/**
*
* Clears the Intel flash bank status register and place the bank into read mode.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the bank address.
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_BUSY if the flash bank were in the middle of an
* operation and could not be reset.
* - XFLASH_ERROR if the bank have experienced an internal error
* during the operation. XFlash_DeviceControl() must be used to
* access the cause of the device specific error condition.
*
* @note None.
*
******************************************************************************/
static int XFlashIntel_ResetBank(XFlash *InstancePtr, u32 Offset, u32 Bytes)
{
XFlashVendorData_Intel *DevDataPtr;
int Status;
u16 Region, Block;
u32 BaseAddress;
u32 Dummy;
XFlashGeometry *GeomPtr;
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
/*
* Handle case when zero bytes is provided.
*/
if (Bytes == 0) {
return XST_SUCCESS;
}
GeomPtr = &InstancePtr->Geometry;
BaseAddress = GeomPtr->BaseAddress;
DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Convert the starting address to block coordinates. This also verifies
* the starting address is within the instance's address space.
*/
Status = XFlashGeometry_ToBlock(GeomPtr, Offset, &Region,
&Block, &Dummy);
if (Status != XST_SUCCESS) {
return (XFLASH_ADDRESS_ERROR);
}
while ((GeomPtr->EraseRegion[Region].AbsoluteOffset <=
(Offset + Bytes - 1)) &&
(Region < InstancePtr->Geometry.NumEraseRegions)) {
/*
* Send the clear status register command. Use the max write
* width to notify parts of all layouts.
*/
DevDataPtr->SendCmd(BaseAddress,
GeomPtr->EraseRegion[Region].AbsoluteOffset,
XFL_INTEL_CMD_CLEAR_STATUS_REG);
DevDataPtr->SendCmd(BaseAddress,
GeomPtr->EraseRegion[Region].AbsoluteOffset,
XFL_INTEL_CMD_READ_STATUS_REG);
/*
* Sample the status of the parts, then place them into
* read-array mode.
*/
Status = DevDataPtr->GetStatus(InstancePtr,
GeomPtr->EraseRegion[Region].AbsoluteOffset);
/*
* Some Intel CFI chips support 0xF0 command instead of 0xFF as
* reset/read array command.
*/
DevDataPtr->SendCmd(BaseAddress,
GeomPtr->EraseRegion[Region].AbsoluteOffset,
XFL_INTEL_CMD_RESET_0xF0);
DevDataPtr->SendCmd(BaseAddress,
GeomPtr->EraseRegion[Region].AbsoluteOffset,
XFL_INTEL_CMD_READ_ARRAY);
/*
* If the status is not ready, then something is wrong.
*/
if (Status != XFLASH_READY) {
if (Status != XFLASH_BUSY) {
return (XFLASH_ERROR);
}
else {
return (XFLASH_BUSY);
}
}
/*
* Increment the region/bank.
*/
Region++;
}
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Performs the Intel device specific control functions.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Command is the device specific command to issue.
* @param Parameters specifies the arguments passed to the device control
* function.
*
* @return
* - XST_SUCCESS if successful
* - XFLASH_NOT_SUPPORTED if the command is not
* recognized/supported by the device(s).
*
* @note None.
*
******************************************************************************/
int XFlashIntel_DeviceControl(XFlash *InstancePtr, u32 Command,
DeviceCtrlParam *Parameters)
{
int Status;
XFlashVendorData_Intel *DevDataPtr;
/*
* Verify inputs are valid.
*/
if(InstancePtr == NULL) {
return XST_FAILURE;
}
DevDataPtr = GET_PARTDATA(InstancePtr);
switch (Command) {
case XFL_DEVCTL_GET_LAST_ERROR:
Parameters->LastErrorParam.Error =
DevDataPtr->SR_LastError.Mask32;
return (XST_SUCCESS);
case XFL_DEVCTL_GET_GEOMETRY:
Parameters->GeometryParam.GeometryPtr =
&InstancePtr->Geometry;
return XST_SUCCESS;
case XFL_DEVCTL_GET_PROPERTIES:
Parameters->PropertiesParam.PropertiesPtr =
&InstancePtr->Properties;
return XST_SUCCESS;
case XFL_DEVCTL_SET_RYBY:
if (InstancePtr->Properties.PartID.CommandSet !=
XFL_CMDSET_INTEL_EXTENDED) {
return (XFLASH_NOT_SUPPORTED);
}
Status = SetRYBY(InstancePtr,
Parameters->RyByParam.Param);
return (Status);
case XFL_DEVCTL_SET_CONFIG_REG:
if (InstancePtr->IsPlatformFlash == 1) {
DevDataPtr->SendCmdSeq(
InstancePtr->Geometry.BaseAddress,
Parameters->ConfigRegParam.Value,
XFL_INTEL_CMD_CONFIG_REG_SETUP,
XFL_INTEL_CMD_CONFIG_REG_CONFIRM);
return (XST_SUCCESS);
}
return (XFLASH_NOT_SUPPORTED);
default:
return (XFLASH_NOT_SUPPORTED);
}
}
/*****************************************************************************/
/**
*
* Retrieves and interprets status register data from part arrays that occupy a
* 8-bit bus.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return
* - XFLASH_READY if the flash device is ready.
* - XFLASH_BUSY if the flash device is Busy.
* - XFLASH_ERROR if some error has occurred during flash
* operation.
*
* @note No attempt is made to determine the exact cause of an error.
* Instead that determination is left up to the user.
*
******************************************************************************/
static int GetStatus8(XFlash *InstancePtr, u32 Offset)
{
u8 RegData;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Sample the register(s).
*/
RegData = READ_FLASH_8(InstancePtr->Geometry.BaseAddress + Offset);
/*
* First determine if the device(s) are ready without errors indicated.
*/
if (RegData == DevDataPtr->SR_WsmReady.Mask8) {
return (XFLASH_READY);
}
/*
* Next determine if the device(s) are still busy.
*/
if ((RegData & DevDataPtr->SR_WsmReady.Mask8) !=
DevDataPtr->SR_WsmReady.Mask8) {
return (XFLASH_BUSY);
}
/*
* If control reaches this point, then an error is pending. Copy the
* entire set of registers to the SR_LastError attribute.
*/
DevDataPtr->SR_LastError.Mask8 = RegData;
return (XFLASH_ERROR);
}
/*****************************************************************************/
/**
*
* Retrieves and interprets status register data from part arrays that occupy a
* 16-bit bus.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return
* - XFLASH_READY if the flash device is ready.
* - XFLASH_BUSY if the flash device is Busy.
* - XFLASH_ERROR if some error has occurred during flash
* operation.
*
* @note No attempt is made to determine the exact cause of an error.
* Instead that determination is left up to the user.
*
******************************************************************************/
static int GetStatus16(XFlash *InstancePtr, u32 Offset)
{
u16 RegData;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Sample the register(s).
*/
RegData = READ_FLASH_16(InstancePtr->Geometry.BaseAddress + Offset);
/*
* First determine if the device(s) are ready without errors indicated.
*/
if (RegData == DevDataPtr->SR_WsmReady.Mask16) {
return (XFLASH_READY);
}
/*
* Next determine if the device(s) are still busy.
*/
if ((RegData & DevDataPtr->SR_WsmReady.Mask16) !=
DevDataPtr->SR_WsmReady.Mask16) {
return (XFLASH_BUSY);
}
/*
* If control reaches this point, then an error is pending. Copy the
* entire set of registers to the SR_LastError attribute.
*/
DevDataPtr->SR_LastError.Mask16 = RegData;
return (XFLASH_ERROR);
}
/*****************************************************************************/
/**
*
* Retrieves and interprets status register data from part arrays that occupy a
* 32-bit bus.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return
* - XFLASH_READY if the flash device is ready.
* - XFLASH_BUSY if the flash device is Busy.
* - XFLASH_ERROR if some error has occurred during flash
* operation.
*
* @note No attempt is made to determine the exact cause of an error.
* Instead that determination is left up to the user.
*
******************************************************************************/
static int GetStatus32(XFlash *InstancePtr, u32 Offset)
{
u32 RegData;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Sample the register(s).
*/
RegData = READ_FLASH_32(InstancePtr->Geometry.BaseAddress + Offset);
/*
* First, determine if the device(s) are ready without errors indicated.
*/
if (RegData == DevDataPtr->SR_WsmReady.Mask32) {
return (XFLASH_READY);
}
/*
* Next, determine if the device(s) are still busy.
*/
if ((RegData & DevDataPtr->SR_WsmReady.Mask32) !=
DevDataPtr->SR_WsmReady.Mask32) {
return (XFLASH_BUSY);
}
/*
* If control reaches this point, then an error is pending. Copy the
* entire set of registers to the SR_LastError attribute.
*/
DevDataPtr->SR_LastError.Mask32 = RegData;
return (XFLASH_ERROR);
}
/*****************************************************************************/
/**
*
* Retrieves and interprets status register data from part arrays that occupy a
* 64-bit bus.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return
* - XFLASH_READY if the flash device is ready.
* - XFLASH_BUSY if the flash device is Busy.
* - XFLASH_ERROR if some error has occurred during flash
* operation.
*
* @note No attempt is made to determine the exact cause of an error.
* Instead that determination is left up to the user.
*
******************************************************************************/
static int GetStatus64(XFlash *InstancePtr, u32 Offset)
{
Xuint64 RegData;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Sample the status register(s) and OR the 32 bit halves together.
*/
READ_FLASH_64(InstancePtr->Geometry.BaseAddress + Offset, RegData);
/*
* First, determine if the device(s) are ready without errors indicated.
*/
if ((XUINT64_MSW(RegData) == DevDataPtr->SR_WsmReady.Mask32) &&
(XUINT64_LSW(RegData) == DevDataPtr->SR_WsmReady.Mask32)) {
return (XFLASH_READY);
}
/*
* Next, determine if the device(s) are still busy.
*/
if (((XUINT64_MSW(RegData) & DevDataPtr->SR_WsmReady.Mask32) !=
DevDataPtr->SR_WsmReady.Mask32) && ((XUINT64_LSW(RegData)
& DevDataPtr->SR_WsmReady.
Mask32) !=
DevDataPtr->SR_WsmReady.
Mask32)) {
return (XFLASH_BUSY);
}
/*
* If control reaches this point, then an error is pending. Copy the
* entire set of registers to the SR_LastError attribute.
*/
XUINT64_MSW(DevDataPtr->SR_LastError.Mask64) = XUINT64_MSW(RegData);
XUINT64_LSW(DevDataPtr->SR_LastError.Mask64) = XUINT64_LSW(RegData);
return (XFLASH_ERROR);
}
/*****************************************************************************/
/**
*
* Polls the status register until the WSM is ready. The device(s) are polled
* by repeatedly reading the status register.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return - XFLASH_READY if WSM is ready.
* - XFLASH_ERROR if WSM is ready, but an error condition
* exists.
*
* @note For Intel parts, the status register can be accessed from any
* addressable location in the bank, in command mode. So we pick
* the address where operation was performed.
*
******************************************************************************/
static int PollSR8(XFlash *InstancePtr, u32 Offset)
{
u8 StatusReg;
u8 ReadyMask;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Wait until WSM indicates that it is complete.
*/
ReadyMask = DevDataPtr->SR_WsmReady.Mask8;
StatusReg = READ_FLASH_8(InstancePtr->Geometry.BaseAddress + Offset);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_8(InstancePtr->Geometry.BaseAddress +
Offset);
}
/*
* WSM is ready, see if an error bit is set.
*/
if (StatusReg != ReadyMask) {
DevDataPtr->SR_LastError.Mask8 = StatusReg;
return (XFLASH_ERROR);
}
else {
return (XFLASH_READY);
}
}
/*****************************************************************************/
/**
*
* Polls the status register until the WSM is ready. The device(s) are polled
* by repeatedly reading the status register.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return - XFLASH_READY if WSM is ready.
* - XFLASH_ERROR if WSM is ready, but an error condition
* exists.
*
* @note For Intel parts, the status register can be accessed from any
* addressable location in the bank, in command mode. So we pick
* the address where operation was performed.
*
******************************************************************************/
static int PollSR16(XFlash *InstancePtr, u32 Offset)
{
u16 StatusReg;
u16 ReadyMask;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Wait until WSM indicates that it is complete.
*/
ReadyMask = DevDataPtr->SR_WsmReady.Mask16;
StatusReg = READ_FLASH_16(InstancePtr->Geometry.BaseAddress + Offset);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_16(InstancePtr->Geometry.BaseAddress +
Offset);
}
/*
* WSM is ready, see if an error bit is set.
*/
if (StatusReg != ReadyMask) {
DevDataPtr->SR_LastError.Mask16 = StatusReg;
return (XFLASH_ERROR);
}
else {
return (XFLASH_READY);
}
}
/*****************************************************************************/
/**
*
* Polls the status register until the WSM is ready. The
* device(s) are polled by repeatedly reading the status register.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return - XFLASH_READY if WSM is ready.
* - XFLASH_ERROR if WSM is ready, but an error condition
* exists.
*
* @note For Intel parts, the status register can be accessed from any
* addressable location in the bank, in command mode. So we pick
* the address where operation was performed.
*
******************************************************************************/
static int PollSR32(XFlash *InstancePtr, u32 Offset)
{
u32 StatusReg;
u32 ReadyMask;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Wait until WSM indicates that it is complete.
*/
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
StatusReg = READ_FLASH_32(InstancePtr->Geometry.BaseAddress + Offset);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_32(InstancePtr->Geometry.BaseAddress +
Offset);
}
/*
* WSM is ready, see if an error bit is set.
*/
if (StatusReg != ReadyMask) {
DevDataPtr->SR_LastError.Mask32 = StatusReg;
return (XFLASH_ERROR);
}
else {
return (XFLASH_READY);
}
}
/*****************************************************************************/
/**
*
* Polls the status register until the WSM is ready. The device(s) are polled
* by repeatedly reading the status register.
*
* @param InstancePtr is the pointer to the XFlash instance.
* @param Offset is the offset address in the flash device.
*
* @return - XFLASH_READY if WSM is ready.
* - XFLASH_ERROR if WSM is ready, but an error condition
* exists.
*
* @note For Intel parts, the status register can be accessed from any
* addressable location in the bank, in command mode. So we pick
* the address where operation was performed.
*
******************************************************************************/
static int PollSR64(XFlash *InstancePtr, u32 Offset)
{
Xuint64 StatusReg;
u32 ReadyMask;
XFlashVendorData_Intel *DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Wait until WSM indicates that it is complete.
*/
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
READ_FLASH_64(InstancePtr->Geometry.BaseAddress + Offset, StatusReg);
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
READ_FLASH_64(InstancePtr->Geometry.BaseAddress + Offset,
StatusReg);
}
/*
* WSM is ready, see if an error bit is set.
*/
if ((XUINT64_MSW(StatusReg) != ReadyMask) ||
(XUINT64_LSW(StatusReg) != ReadyMask)) {
XUINT64_MSW(DevDataPtr->SR_LastError.Mask64) =
XUINT64_MSW(StatusReg);
XUINT64_LSW(DevDataPtr->SR_LastError.Mask64) =
XUINT64_LSW(StatusReg);
return (XFLASH_ERROR);
}
else {
return (XFLASH_READY);
}
}
/*****************************************************************************/
/**
*
* Writes a command using a 8-bit bus cycle.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd is the command/data to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmd8(u32 BaseAddress, u32 Offset, u32 Cmd)
{
WRITE_FLASH_8(BaseAddress + Offset, Cmd);
}
/*****************************************************************************/
/**
*
* Writes a command using a 16-bit bus cycle.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd is the command/data to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmd16(u32 BaseAddress, u32 Offset, u32 Cmd)
{
WRITE_FLASH_16(BaseAddress + Offset, Cmd);
}
/*****************************************************************************/
/**
*
* Writes a command using a 32-bit bus cycle.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd is the command/data to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmd32(u32 BaseAddress, u32 Offset, u32 Cmd)
{
WRITE_FLASH_32(BaseAddress + Offset, Cmd);
}
/*****************************************************************************/
/**
*
* Writes a command using a 64-bit bus cycle. Depending on the architecture,
* this may be a single write or two 32 bit writes.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd is the command/data to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmd64(u32 BaseAddress, u32 Offset, u32 Cmd)
{
WRITE_FLASH_64x2(BaseAddress + Offset, Cmd, Cmd);
}
/*****************************************************************************/
/**
*
* Writes a command sequence using 8-bit bus cycles.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd1 is the first command to write at BaseAddress + Offset
* @param Cmd2 is the second command to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmdSeq8(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
{
WRITE_FLASH_8(BaseAddress + Offset, Cmd1);
WRITE_FLASH_8(BaseAddress + Offset, Cmd2);
}
/*****************************************************************************/
/**
*
* Writes a command sequence using 16-bit bus cycles.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd1 is the first command to write at BaseAddress + Offset
* @param Cmd2 is the second command to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmdSeq16(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
{
WRITE_FLASH_16(BaseAddress + Offset, Cmd1);
WRITE_FLASH_16(BaseAddress + Offset, Cmd2);
}
/*****************************************************************************/
/**
*
* Writes a command sequence using 32-bit bus cycles.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd1 is the first command to write at BaseAddress + Offset
* @param Cmd2 is the second command to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmdSeq32(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
{
WRITE_FLASH_32(BaseAddress + Offset, Cmd1);
WRITE_FLASH_32(BaseAddress + Offset, Cmd2);
}
/*****************************************************************************/
/**
*
* Writes a command sequence using 64-bit bus cycles. Depending on the
* architecture, this may be a single write or two 32 bit writes.
*
* @param BaseAddress is the base address of device
* @param Offset is the offset into device
* @param Cmd1 is the first command to write at BaseAddress + Offset
* @param Cmd2 is the second command to write at BaseAddress + Offset
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void SendCmdSeq64(u32 BaseAddress, u32 Offset, u32 Cmd1, u32 Cmd2)
{
WRITE_FLASH_64x2(BaseAddress + Offset, Cmd1, Cmd1);
WRITE_FLASH_64x2(BaseAddress + Offset, Cmd2, Cmd2);
}
/*****************************************************************************/
/**
*
* Program the device(s) using the faster write to buffer mechanism. The
* device(s) are programmed in parallel.
*
* @param InstancePtr is the instance to work on
* @param DestPtr is the physical destination address in flash memory
* space
* @param SrcPtr is the source data
* @param Bytes is the number of bytes to program
*
* @return
*
* - XST_SUCCESS if successful.
* - XFLASH_ERROR if a write error occurred. This error is
* usually device specific. Use XFlash_DeviceControl() to
* retrieve specific error conditions. When this error is
* returned, it is possible that the target address range was
* only partially programmed.
*
* @note
*
* This algorithm programs only full buffers at a time and must take care
* of the following situations:
* - Partial first buffer programming with pre and/or post padding
* required.
* - Multiple full buffer programming.
* - Partial last buffer programming with post padding.
* <br><br>
* When padding, 0xFF is written to each byte to be padded. This in effect does
* nothing to the current contents of the flash memory and saves us from having
* to merge real flash data with user data on partial buffer writes.
* <br><br>
* If hardware is failing, then this routine could get stuck in an endless loop.
*
******************************************************************************/
static int WriteBuffer8(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes)
{
XFlashVendorData_Intel *DevDataPtr;
u8 *SrcWordPtr = (u8*)SrcPtr;
u8 *DestWordPtr = (u8*)DestPtr;
u8 StatusReg;
u8 ReadyMask;
u32 BytesLeft = Bytes;
u32 BaseAddress;
u32 PartialBytes;
u32 Count;
int Status = XST_SUCCESS;
int Index;
DevDataPtr = GET_PARTDATA(InstancePtr);
BaseAddress = InstancePtr->Geometry.BaseAddress;
ReadyMask = DevDataPtr->SR_WsmReady.Mask8;
/*
* Determine if a partial first buffer must be programmed.
*/
PartialBytes = (u32) DestWordPtr &
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
/*
* This write cycle programs the first partial write buffer.
*/
if (PartialBytes) {
/*
* Backup DestWord to the beginning of a buffer alignment area
* Count is the number of write cycles left after pre-filling
* the write buffer with 0xFFFF.
*/
DestWordPtr = (u8*)((u32) DestWordPtr - PartialBytes);
Count = InstancePtr->Properties.ProgCap.WriteBufferSize;
/*
* Send command to write buffer. Wait for buffer to become
* available. Write number of words to be written (always the
* maximum).
*/
WRITE_FLASH_8(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_8(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_8(DestWordPtr);
}
WRITE_FLASH_8(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Write 0xFFFF padding until we get to the start of the
* original DestWord.
*/
while (PartialBytes > 1) {
WRITE_FLASH_8(DestWordPtr++, 0xFFFF);
PartialBytes -= 1;
Count--;
}
/*
* Write the remainder of this write buffer.
*/
Index = 0;
while (Count--) {
/*
* Write Byte
*/
if (BytesLeft >= 1) {
WRITE_FLASH_8(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 1;
}
/*
* End of SrcWords
*/
else {
WRITE_FLASH_8(&DestWordPtr[Index], 0xFF);
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_8(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR8(InstancePtr, ((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination to next buffer
*/
SrcWordPtr += Index;
DestWordPtr += Index;
}
/*
* At this point DestWordPtr and SrcWordPtr are aligned to a write
* buffer boundary. The next batch of writes utilize write cycles full
* of SrcData.
*/
Count = InstancePtr->Properties.ProgCap.WriteBufferSize;
while (BytesLeft >= InstancePtr->Properties.ProgCap.WriteBufferSize) {
/*
* Send command to write buffer. Wait for buffer to become
* available. Write number of words to be written (always the
* maximum).
*/
WRITE_FLASH_8(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_8(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_8(DestWordPtr);
}
WRITE_FLASH_8(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer
*/
for (Index = 0; Index < Count; Index++) {
WRITE_FLASH_8(&DestWordPtr[Index], SrcWordPtr[Index]);
BytesLeft -= 1;
}
/*
* Send confirmation and wait for status
*/
WRITE_FLASH_8(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR8(InstancePtr, ((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination.
*/
SrcWordPtr += Count;
DestWordPtr += Count;
}
/*
* The last phase is to write a partial last buffer.
*/
if (BytesLeft) {
/*
* Send command to write buffer. Wait for buffer to become
* available. Write number of words to be written (always the
* maximum).
*/
WRITE_FLASH_8(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_8(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_8(DestWordPtr);
}
WRITE_FLASH_8(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer
*/
Index = 0;
while (Count--) {
/*
* Write Byte
*/
if (BytesLeft >= 1) {
WRITE_FLASH_8(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 1;
}
/*
* End of SrcWords
*/
else {
WRITE_FLASH_8(&DestWordPtr[Index], 0xFF);
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_8(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR8(InstancePtr, ((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
}
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Program the device(s) using the faster write to buffer mechanism. The
* device(s) are programmed in parallel.
*
* @param InstancePtr is the instance to work on
* @param DestPtr is the physical destination address in flash memory
* space
* @param SrcPtr is the source data
* @param Bytes is the number of bytes to program
*
* @return
*
* - XST_SUCCESS if successful.
* - XFLASH_ERROR if a write error occurred. This error is
* usually device specific. Use XFlash_DeviceControl() to
* retrieve specific error conditions. When this error is
* returned, it is possible that the target address range was
* only partially programmed.
* - XFLASH_ALIGNMENT_ERROR if the source and destination pointers
* are not aligned to a 16-bit word.
* @note
*
* This algorithm programs only full buffers at a time and must take care
* of the following situations:
* - Partial first buffer programming with pre and/or post padding
* required.
* - Multiple full buffer programming.
* - Partial last buffer programming with post padding.
* <br><br>
* When padding, 0xFF is written to each byte to be padded. This in effect does
* nothing to the current contents of the flash memory and saves us from having
* to merge real flash data with user data on partial buffer writes.
* <br><br>
* If hardware is failing, then this routine could get stuck in an endless loop.
*
******************************************************************************/
static int WriteBuffer16(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes)
{
XFlashVendorData_Intel *DevDataPtr;
u16 *SrcWordPtr = (u16*)SrcPtr;
u16 *DestWordPtr = (u16*)DestPtr;
u16 StatusReg;
u16 ReadyMask;
u32 BaseAddress;
u32 BytesLeft = Bytes;
u32 PartialBytes;
u32 Count;
int Status = XST_SUCCESS;
int Index;
DevDataPtr = GET_PARTDATA(InstancePtr);
BaseAddress = InstancePtr->Geometry.BaseAddress;
ReadyMask = DevDataPtr->SR_WsmReady.Mask16;
/*
* Make sure DestPtr and SrcPtr are aligned to a 16-bit word.
*/
if (((int) SrcWordPtr & 1) || ((int) DestWordPtr & 1)) {
return (XFLASH_ALIGNMENT_ERROR);
}
/*
* Determine if a partial first buffer must be programmed.
*/
PartialBytes = (u32) DestWordPtr &
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
/*
* This write cycle programs the first partial write buffer.
*/
if (PartialBytes) {
/*
* Backup DestWord to the beginning of a buffer alignment area
* Count is the number of write cycles left after pre-filling
* the write buffer with 0xFFFF.
*/
DestWordPtr = (u16*)((u32) DestWordPtr - PartialBytes);
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 1;
/*
* Send command to write buffer. Wait for buffer to become
* available. Write number of words to be written (always the
* maximum).
*/
WRITE_FLASH_16(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_16(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_16(DestWordPtr);
}
WRITE_FLASH_16(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Write 0xFFFF padding until we get to the start of the
* original DestWord.
*/
while (PartialBytes > 1) {
WRITE_FLASH_16(DestWordPtr++, 0xFFFF);
PartialBytes -= 2;
Count--;
}
/*
* Write the remainder of this write buffer.
*/
Index = 0;
while (Count--) {
/* Full word */
if (BytesLeft > 1) {
WRITE_FLASH_16(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 2;
}
/* End of SrcWords */
else if (BytesLeft == 0) {
WRITE_FLASH_16(&DestWordPtr[Index], 0xFFFF);
}
/* Partial word */
else { /* BytesLeft == 1 */
#ifdef XPAR_AXI_EMC
WRITE_FLASH_16(&DestWordPtr[Index],
0xFF00 | SrcWordPtr[Index]);
#else
WRITE_FLASH_16(&DestWordPtr[Index],
0x00FF | SrcWordPtr[Index]);
#endif
BytesLeft--;
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_16(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR16(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination to next buffer
*/
SrcWordPtr += Index;
DestWordPtr += Index;
}
/*
* At this point DestWordPtr and SrcWordPtr are aligned to a write
* buffer boundary. The next batch of writes utilize write cycles full
* of SrcData.
*/
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 1;
while (BytesLeft > InstancePtr->Properties.ProgCap.WriteBufferSize) {
/*
* Send command to write buffer. Wait for buffer to become
* available. Write number of words to be written (always the
* maximum).
*/
WRITE_FLASH_16(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_16(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_16(DestWordPtr);
}
WRITE_FLASH_16(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer
*/
for (Index = 0; Index < Count; Index++) {
WRITE_FLASH_16(&DestWordPtr[Index], SrcWordPtr[Index]);
BytesLeft -= 2;
}
/*
* Send confirmation and wait for status
*/
WRITE_FLASH_16(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR16(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination.
*/
SrcWordPtr += Count;
DestWordPtr += Count;
}
/*
* The last phase is to write a partial last buffer.
*/
if (BytesLeft) {
/*
* Send command to write buffer. Wait for buffer to become
* available. Write number of words to be written (always the
* maximum).
*/
WRITE_FLASH_16(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_16(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_16(DestWordPtr);
}
WRITE_FLASH_16(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer
*/
Index = 0;
while (Count--) {
/*
* Full word.
*/
if (BytesLeft > 1) {
WRITE_FLASH_16(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 2;
}
/* End of SrcWords */
else if (BytesLeft == 0) {
WRITE_FLASH_16(&DestWordPtr[Index], 0xFFFF);
}
/* Partial word */
else { /* BytesLeft == 1 */
#ifdef XPAR_AXI_EMC
WRITE_FLASH_16(&DestWordPtr[Index],
0xFF00 | SrcWordPtr[Index]);
#else
WRITE_FLASH_16(&DestWordPtr[Index],
0x00FF | SrcWordPtr[Index]);
#endif
BytesLeft--;
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_16(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR16(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
}
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Programs the device(s) using the faster write to buffer mechanism. The
* device(s) are programmed in parallel.
*
* @param InstancePtr is the instance to work on
* @param DestPtr is the physical destination address in flash memory
* space
* @param SrcPtr is the source data
* @param Bytes is the number of bytes to program
*
* @return
* - XST_SUCCESS if successful.
* - XFLASH_ERROR if a write error occurred. This error is
* usually device specific. Use XFlash_DeviceControl() to
* retrieve specific error conditions. When this error is
* returned, it is possible that the target address range was
* only partially programmed.
* - XFLASH_ALIGNMENT_ERROR if the source and destination pointers
* are not aligned to a 16-bit word.
*
* @note
*
* This algorithm programs only full buffers at a time and must take care
* of the following situations:
* - Partial first buffer programming with pre and/or post padding
* required.
* - Multiple full buffer programming.
* - Partial last buffer programming with post padding.
* <br><br>
* When padding, 0xFF is written to each byte to be padded. This in effect does
* nothing to the current contents of the flash memory and saves us from having
* to merge real flash data with user data on partial buffer writes.
* <br><br>
* If hardware is failing, then this routine could get stuck in an endless loop.
*
******************************************************************************/
static int WriteBuffer32(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes)
{
XFlashVendorData_Intel *DevDataPtr;
u32 *SrcWordPtr = (u32*)SrcPtr;
u32 *DestWordPtr = (u32*)DestPtr;
u32 StatusReg;
u32 ReadyMask;
u32 BaseAddress;
u32 BytesLeft = Bytes;
u32 PartialBytes;
u32 Count;
int Status = XST_SUCCESS;
int Index;
DevDataPtr = GET_PARTDATA(InstancePtr);
BaseAddress = InstancePtr->Geometry.BaseAddress;
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
/*
* Make sure DestPtr and SrcPtr are aligned to a 32-bit word.
*/
if (((int) SrcWordPtr & 3) || ((int) DestWordPtr & 3)) {
return (XFLASH_ALIGNMENT_ERROR);
}
/*
* Determine if a partial first buffer must be programmed.
*/
PartialBytes = (u32) DestWordPtr &
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
/*
* This write cycle programs the first partial write buffer.
*/
if (PartialBytes) {
/*
* Backup DestWord to the beginning of a buffer alignment area
* Count is the number of write cycles left after pre-filling
* the write buffer with 0xFFFF.
*/
DestWordPtr = (u32*)((u32) DestWordPtr - PartialBytes);
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
/*
* Send command to write buffer. Wait for buffer to become
* available.
* Write number of words to be written (always the maximum).
*/
WRITE_FLASH_32(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_32(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_32(DestWordPtr);
}
WRITE_FLASH_32(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Write 0xFFFFFFFF padding until we get to the start of the
* user data.
*/
while (PartialBytes > 3) {
WRITE_FLASH_32(DestWordPtr++, 0xFFFFFFFF);
PartialBytes -= 4;
Count--;
}
/*
* Write the remainder of this write buffer.
*/
Index = 0;
while (Count--) {
/* Full word */
if (BytesLeft > 3) {
WRITE_FLASH_32(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 4;
}
/* End of SrcWords */
else if (BytesLeft == 0) {
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
}
/* Partial word */
else if (BytesLeft == 1) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFFFF00 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x00FFFFFF | SrcWordPtr[Index]);
#endif
BytesLeft--;
}
else if (BytesLeft == 2) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFF0000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x0000FFFF | SrcWordPtr[Index]);
#endif
BytesLeft -= 2;
}
else { /* BytesLeft == 3 */
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFF000000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x000000FF | SrcWordPtr[Index]);
#endif
BytesLeft -= 3;
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_32(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR32(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination to last access position.
*/
SrcWordPtr += Index;
DestWordPtr += Index;
}
/*
* At this point DestPtr and SrcPtr are aligned to a write buffer
* boundary.
* The next batch of writes utilize a write cycle full of SrcData.
*/
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
while (BytesLeft >= InstancePtr->Properties.ProgCap.WriteBufferSize) {
/*
* Send command to write buffer. Wait for buffer to become
* available.
* Write number of words to be written (always the maximum).
*/
WRITE_FLASH_32(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_32(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_32(DestWordPtr);
}
WRITE_FLASH_32(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer.
*/
for (Index = 0; Index < Count; Index++) {
WRITE_FLASH_32(&DestWordPtr[Index], SrcWordPtr[Index]);
BytesLeft -= 4;
}
/*
* Send confirmation and wait for status.
*/
WRITE_FLASH_32(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR32(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination.
*/
SrcWordPtr += Count;
DestWordPtr += Count;
}
/*
* The last phase is to write a partial last write buffer.
*/
if (BytesLeft) {
/*
* Send command to write buffer. Wait for buffer to become
* available.
* Write number of words to be written (always the maximum).
*/
WRITE_FLASH_32(DestWordPtr,
InstancePtr->Command.WriteBufferCommand);
StatusReg = READ_FLASH_32(DestWordPtr);
while ((StatusReg & ReadyMask) != ReadyMask) {
StatusReg = READ_FLASH_32(DestWordPtr);
}
WRITE_FLASH_32(DestWordPtr, DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer.
*/
Index = 0;
while (Count--) {
/*
* Full word.
*/
if (BytesLeft > 3) {
WRITE_FLASH_32(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 4;
}
/* End of SrcWords */
else if (BytesLeft == 0) {
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
}
/* Partial word */
else if (BytesLeft == 1) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFFFF00 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x00FFFFFF | SrcWordPtr[Index]);
#endif
BytesLeft--;
}
else if (BytesLeft == 2) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFF0000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x0000FFFF | SrcWordPtr[Index]);
#endif
BytesLeft -= 2;
}
else { /* BytesLeft == 3 */
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFF000000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x000000FF | SrcWordPtr[Index]);
#endif
BytesLeft -= 3;
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_32(DestWordPtr, XFL_INTEL_CMD_CONFIRM);
Status = PollSR32(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
}
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Programs the device(s) using the faster write to buffer mechanism. The
* device(s) are programmed in parallel.
*
* @param InstancePtr is the instance to work on.
* @param DestPtr is the physical destination address in flash memory
* space.
* @param SrcPtr is the source data.
* @param Bytes is the number of bytes to program.
*
* @return
*
* - XST_SUCCESS if successful.
* - XFLASH_ERROR if a write error occurred. This error is
* usually device specific. Use XFlash_DeviceControl() to
* retrieve specific error conditions. When this error is
* returned, it is possible that the target address range was
* only partially programmed.
* - XFLASH_ALIGNMENT_ERROR if the source and destination pointers
* are not aligned to a 16-bit word.
*
* @note
*
* This algorithm programs only full buffers at a time and must take care
* of the following situations:
* - Partial first buffer programming with pre and/or post padding
* required.
* - Multiple full buffer programming.
* - Partial last buffer programming with post padding.
* <br><br>
* When padding, 0xFF is written to each byte to be padded. This in effect does
* nothing to the current contents of the flash memory and saves us from having
* to merge real flash data with user data on partial buffer writes.
* <br><br>
* If hardware is failing, then this routine could get stuck in an endless loop.
*
******************************************************************************/
static int WriteBuffer64(XFlash *InstancePtr, void *DestPtr,
void *SrcPtr, u32 Bytes)
{
XFlashVendorData_Intel *DevDataPtr;
u32 *SrcWordPtr = (u32*)SrcPtr;
u32 *DestWordPtr = (u32*)DestPtr;
Xuint64 StatusReg;
u32 BaseAddress;
u32 ReadyMask;
u32 BytesLeft = Bytes;
u32 PartialBytes;
u32 Count;
int Status = XST_SUCCESS;
int Index;
DevDataPtr = GET_PARTDATA(InstancePtr);
BaseAddress = InstancePtr->Geometry.BaseAddress;
ReadyMask = DevDataPtr->SR_WsmReady.Mask32;
XUINT64_MSW(StatusReg) = 0;
XUINT64_LSW(StatusReg) = 0;
/*
* Make sure DestPtr and SrcPtr are aligned to a 32-bit word.
*/
if (((int) SrcWordPtr & 3) || ((int) DestWordPtr & 3)) {
return (XFLASH_ALIGNMENT_ERROR);
}
/*
* Determine if a partial first buffer must be programmed.
*/
PartialBytes = (u32) DestWordPtr &
InstancePtr->Properties.ProgCap.WriteBufferAlignmentMask;
/*
* This write cycle programs the first partial write buffer.
*/
if (PartialBytes) {
/*
* Backup DestWord to the beginning of a buffer alignment area
* Count is the number of write cycles left after pre-filling
* the write buffer with 0xFFFF.
*/
DestWordPtr = (u32*)((u32) DestWordPtr - PartialBytes);
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
/*
* Send command to write buffer. Wait for buffer to become
* available.
* Write number of words to be written (always the maximum)
*/
WRITE_FLASH_64x2(DestWordPtr,
InstancePtr->Command.WriteBufferCommand,
InstancePtr->Command.WriteBufferCommand);
READ_FLASH_64(DestWordPtr, StatusReg);
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
READ_FLASH_64(DestWordPtr, StatusReg);
}
WRITE_FLASH_64x2(DestWordPtr, DevDataPtr->WriteBufferWordCount,
DevDataPtr->WriteBufferWordCount);
/*
* Write 0xFFFFFFFF padding until we get to the start of the
* user data
*/
while (PartialBytes > 3) {
WRITE_FLASH_32(DestWordPtr++, 0xFFFFFFFF);
PartialBytes -= 4;
Count--;
}
/*
* Write the remainder of this write buffer
*/
Index = 0;
while (Count--) {
/* Full word */
if (BytesLeft > 3) {
WRITE_FLASH_32(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 4;
}
/* End of SrcWords */
else if (BytesLeft == 0) {
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
}
/* Partial word */
else if (BytesLeft == 1) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFFFF00 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x00FFFFFF | SrcWordPtr[Index]);
#endif
BytesLeft--;
}
else if (BytesLeft == 2) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFF0000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x0000FFFF | SrcWordPtr[Index]);
#endif
BytesLeft -= 2;
}
else { /* BytesLeft == 3 */
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFF000000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x000000FF | SrcWordPtr[Index]);
#endif
BytesLeft -= 3;
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_64x2((u32) DestWordPtr & ~7,
XFL_INTEL_CMD_CONFIRM, XFL_INTEL_CMD_CONFIRM);
Status = PollSR64(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination to last access position
*/
SrcWordPtr += Index;
DestWordPtr += Index;
}
/*
* At this point DestPtr and SrcPtr are aligned to a write buffer
* boundary.
* The next batch of writes utilize a write cycle full of SrcData
*/
Count = InstancePtr->Properties.ProgCap.WriteBufferSize >> 2;
while (BytesLeft >= InstancePtr->Properties.ProgCap.WriteBufferSize) {
/*
* Send command to write buffer. Wait for buffer to become
* available.
* Write number of words to be written (always the maximum)
*/
WRITE_FLASH_64x2(DestWordPtr,
InstancePtr->Command.WriteBufferCommand,
InstancePtr->Command.WriteBufferCommand);
READ_FLASH_64(DestWordPtr, StatusReg);
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
READ_FLASH_64(DestWordPtr, StatusReg);
}
WRITE_FLASH_64x2(DestWordPtr, DevDataPtr->WriteBufferWordCount,
DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer.
*/
for (Index = 0; Index < Count; Index++) {
WRITE_FLASH_32(&DestWordPtr[Index], SrcWordPtr[Index]);
BytesLeft -= 4;
}
/*
* Send confirmation and wait for status.
*/
WRITE_FLASH_64x2((u32) DestWordPtr & ~7,
XFL_INTEL_CMD_CONFIRM, XFL_INTEL_CMD_CONFIRM);
Status = PollSR64(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
/*
* Increment source and destination.
*/
SrcWordPtr += Count;
DestWordPtr += Count;
}
/*
* The last phase is to write a partial last write buffer.
*/
if (BytesLeft) {
/*
* Send command to write buffer. Wait for buffer to become
* available.
* Write number of words to be written (always the maximum).
*/
WRITE_FLASH_64x2(DestWordPtr,
InstancePtr->Command.WriteBufferCommand,
InstancePtr->Command.WriteBufferCommand);
while (((XUINT64_MSW(StatusReg) & ReadyMask) != ReadyMask) ||
((XUINT64_LSW(StatusReg) & ReadyMask) != ReadyMask)) {
READ_FLASH_64(DestWordPtr, StatusReg);
}
WRITE_FLASH_64x2(DestWordPtr, DevDataPtr->WriteBufferWordCount,
DevDataPtr->WriteBufferWordCount);
/*
* Fill the buffer.
*/
Index = 0;
while (Count--) {
/*
* Full word.
*/
if (BytesLeft > 3) {
WRITE_FLASH_32(&DestWordPtr[Index],
SrcWordPtr[Index]);
BytesLeft -= 4;
}
/* End of SrcWords. */
else if (BytesLeft == 0) {
WRITE_FLASH_32(&DestWordPtr[Index], 0xFFFFFFFF);
}
/* Partial word. */
else if (BytesLeft == 1) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFFFF00 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x00FFFFFF | SrcWordPtr[Index]);
#endif
BytesLeft--;
}
else if (BytesLeft == 2) {
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFFFF0000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x0000FFFF | SrcWordPtr[Index]);
#endif
BytesLeft -= 2;
}
else { /* BytesLeft == 3. */
#ifdef XPAR_AXI_EMC
WRITE_FLASH_32(&DestWordPtr[Index],
0xFF000000 | SrcWordPtr[Index]);
#else
WRITE_FLASH_32(&DestWordPtr[Index],
0x000000FF | SrcWordPtr[Index]);
#endif
BytesLeft -= 3;
}
Index++;
}
/*
* Buffer write completed. Send confirmation command and wait
* for completion.
*/
WRITE_FLASH_64x2((u32) DestWordPtr & ~7,
XFL_INTEL_CMD_CONFIRM, XFL_INTEL_CMD_CONFIRM);
Status = PollSR64(InstancePtr,
((u32)DestWordPtr) - BaseAddress);
if (Status != XFLASH_READY) {
return (Status);
}
}
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Reads and interprets part identification data.
*
* @param InstancePtr is the instance to work on.
*
* @return None.
*
* @note None.
*
******************************************************************************/
static void GetPartID(XFlash *InstancePtr)
{
XFlashVendorData_Intel *DevDataPtr;
u32 CmdAddress;
void *Ptr;
u8 Interleave;
u8 Mode;
DevDataPtr = GET_PARTDATA(InstancePtr);
CmdAddress = InstancePtr->Geometry.BaseAddress;
Interleave = (InstancePtr->Geometry.MemoryLayout &
XFL_LAYOUT_CFI_INTERL_MASK) >> 24;
Mode = (InstancePtr->Geometry.MemoryLayout &
XFL_LAYOUT_PART_MODE_MASK) >> 8;
/*
* Send Read id codes command.
*/
DevDataPtr->SendCmd(CmdAddress, 8,
XFL_INTEL_CMD_READ_ID_CODES);
/*
* Retrieve Manufacturer ID located at word offset 0.
*/
XFL_CFI_POSITION_PTR(Ptr, CmdAddress, Interleave, 0);
InstancePtr->Properties.PartID.ManufacturerID =
XFlashCFI_Read8((u8*)Ptr, Interleave, Mode);
/*
* Retrieve Device Code located at word offset 1.
*/
XFL_CFI_ADVANCE_PTR8(Ptr, Interleave);
InstancePtr->Properties.PartID.DeviceID =
XFlashCFI_Read8((u8*)Ptr, Interleave, Mode);
/*
* Place device(s) back into read-array mode.
*/
(void) XFlashIntel_Reset(InstancePtr);
}
/*****************************************************************************/
/**
*
* Sets the RYBY control signal.
*
* @param InstancePtr is the instance to work on.
* @param Mode is the mode to set the RYBY signal to.
*
* @return
*
* - XST_SUCCESS if the mode was successfully
* changed.
* - XFLASH_NOT_SUPPORTED if the mode given is
* unknown/unsupported.
*
* @note None.
*
******************************************************************************/
static int SetRYBY(XFlash *InstancePtr, u32 Mode)
{
u32 Cmd;
XFlashVendorData_Intel *DevDataPtr;
/*
* Determine which command code to use.
*/
switch (Mode) {
case XFL_INTEL_RYBY_PULSE_OFF:
Cmd = XFL_INTEL_CONFIG_RYBY_LEVEL;
break;
case XFL_INTEL_RYBY_PULSE_ON_ERASE:
Cmd = XFL_INTEL_CONFIG_RYBY_PULSE_ERASE;
break;
case XFL_INTEL_RYBY_PULSE_ON_PROG:
Cmd = XFL_INTEL_CONFIG_RYBY_PULSE_WRITE;
break;
case XFL_INTEL_RYBY_PULSE_ON_ERASE_PROG:
Cmd = XFL_INTEL_CONFIG_RYBY_PULSE_ALL;
break;
default:
return (XFLASH_NOT_SUPPORTED);
}
/*
* Send the command to the devices.
*/
DevDataPtr = GET_PARTDATA(InstancePtr);
DevDataPtr->SendCmdSeq(InstancePtr->Geometry.BaseAddress, 0,
XFL_INTEL_CMD_CONFIG, Cmd);
return (XST_SUCCESS);
}
/*****************************************************************************/
/**
*
* Sends commands to erase blocks.
*
* @param InstancePtr is the pointer to xflash object to work on.
* @param Region is the region which the first block appears.
* @param Block is the starting block to erase.
* @param MaxBlocks is the number of consecutive blocks to erase.
*
* @return The number of blocks enqueued to the part's erase buffer.
* Region and Block parameters are incremented the number of blocks
* queued.
*
* @note Limitation: Only support enqueuing one block at a time.
*
******************************************************************************/
static u16 EnqueueEraseBlocks(XFlash *InstancePtr, u16 *Region,
u16 *Block, u16 MaxBlocks)
{
XFlashGeometry *GeomPtr;
XFlashVendorData_Intel *DevDataPtr;
u32 BlockAddress;
/*
* If for some reason the maximum number of blocks to enqueue is
* zero, then don't do anything.
*/
if (MaxBlocks == 0) {
return (0);
}
GeomPtr = &InstancePtr->Geometry;
DevDataPtr = GET_PARTDATA(InstancePtr);
/*
* Get the physical address to write the command to and send command.
*/
(void) XFlashGeometry_ToAbsolute(GeomPtr, *Region, *Block, 0,
&BlockAddress);
DevDataPtr->SendCmdSeq(GeomPtr->BaseAddress, BlockAddress,
XFL_INTEL_CMD_BLOCK_ERASE,
XFL_INTEL_CMD_CONFIRM);
/*
* Increment Region/Block.
*/
XFL_GEOMETRY_INCREMENT(GeomPtr, *Region, *Block);
/*
* Return the number of blocks enqueued.
*/
return (1);
}
#endif /* XPAR_XFL_DEVICE_FAMILY_INTEL */