embeddedsw/XilinxProcessorIPLib/drivers/emacps/src/xemacps.h
Harini Katakam 4ceb19f1ae emacps: Do not call error handler with an error code zero
BUFFNA is not an error and hence the status bit is cleared by the
driver. But the error handler callback is called with a zero error
code in this case. Correct the same.

Signed-off-by: Harini Katakam <harinik@xilinx.com>
Acked-by: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
2015-08-02 21:27:20 +05:30

789 lines
32 KiB
C

/******************************************************************************
*
* Copyright (C) 2010 - 2015 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/****************************************************************************/
/**
*
* @file xemacps.h
* @addtogroup emacps_v3_0
* @{
* @details
*
* The Xilinx Embedded Processor Block Ethernet driver.
*
* For a full description of XEMACPS features, please see the hardware spec.
* This driver supports the following features:
* - Memory mapped access to host interface registers
* - Statistics counter registers for RMON/MIB
* - API for interrupt driven frame transfers for hardware configured DMA
* - Virtual memory support
* - Unicast, broadcast, and multicast receive address filtering
* - Full and half duplex operation
* - Automatic PAD & FCS insertion and stripping
* - Flow control
* - Support up to four 48bit addresses
* - Address checking for four specific 48bit addresses
* - VLAN frame support
* - Pause frame support
* - Large frame support up to 1536 bytes
* - Checksum offload
*
* <b>Driver Description</b>
*
* The device driver enables higher layer software (e.g., an application) to
* communicate to the XEmacPs. The driver handles transmission and reception
* of Ethernet frames, as well as configuration and control. No pre or post
* processing of frame data is performed. The driver does not validate the
* contents of an incoming frame in addition to what has already occurred in
* hardware.
* A single device driver can support multiple devices even when those devices
* have significantly different configurations.
*
* <b>Initialization & Configuration</b>
*
* The XEmacPs_Config structure is used by the driver to configure itself.
* This configuration structure is typically created by the tool-chain based
* on hardware build properties.
*
* The driver instance can be initialized in
*
* - XEmacPs_CfgInitialize(InstancePtr, CfgPtr, EffectiveAddress): Uses a
* configuration structure provided by the caller. If running in a system
* with address translation, the provided virtual memory base address
* replaces the physical address present in the configuration structure.
*
* The device supports DMA only as current development plan. No FIFO mode is
* supported. The driver expects to start the DMA channels and expects that
* the user has set up the buffer descriptor lists.
*
* <b>Interrupts and Asynchronous Callbacks</b>
*
* The driver has no dependencies on the interrupt controller. When an
* interrupt occurs, the handler will perform a small amount of
* housekeeping work, determine the source of the interrupt, and call the
* appropriate callback function. All callbacks are registered by the user
* level application.
*
* <b>Virtual Memory</b>
*
* All virtual to physical memory mappings must occur prior to accessing the
* driver API.
*
* For DMA transactions, user buffers supplied to the driver must be in terms
* of their physical address.
*
* <b>DMA</b>
*
* The DMA engine uses buffer descriptors (BDs) to describe Ethernet frames.
* These BDs are typically chained together into a list the hardware follows
* when transferring data in and out of the packet buffers. Each BD describes
* a memory region containing either a full or partial Ethernet packet.
*
* Interrupt coalescing is not suppoted from this built-in DMA engine.
*
* This API requires the user to understand how the DMA operates. The
* following paragraphs provide some explanation, but the user is encouraged
* to read documentation in xemacps_bdring.h as well as study example code
* that accompanies this driver.
*
* The API is designed to get BDs to and from the DMA engine in the most
* efficient means possible. The first step is to establish a memory region
* to contain all BDs for a specific channel. This is done with
* XEmacPs_BdRingCreate(). This function sets up a BD ring that hardware will
* follow as BDs are processed. The ring will consist of a user defined number
* of BDs which will all be partially initialized. For example on the transmit
* channel, the driver will initialize all BDs' so that they are configured
* for transmit. The more fields that can be permanently setup at
* initialization, then the fewer accesses will be needed to each BD while
* the DMA engine is in operation resulting in better throughput and CPU
* utilization. The best case initialization would require the user to set
* only a frame buffer address and length prior to submitting the BD to the
* engine.
*
* BDs move through the engine with the help of functions
* XEmacPs_BdRingAlloc(), XEmacPs_BdRingToHw(), XEmacPs_BdRingFromHw(),
* and XEmacPs_BdRingFree().
* All these functions handle BDs that are in place. That is, there are no
* copies of BDs kept anywhere and any BD the user interacts with is an actual
* BD from the same ring hardware accesses.
*
* BDs in the ring go through a series of states as follows:
* 1. Idle. The driver controls BDs in this state.
* 2. The user has data to transfer. XEmacPs_BdRingAlloc() is called to
* reserve BD(s). Once allocated, the user may setup the BD(s) with
* frame buffer address, length, and other attributes. The user controls
* BDs in this state.
* 3. The user submits BDs to the DMA engine with XEmacPs_BdRingToHw. BDs
* in this state are either waiting to be processed by hardware, are in
* process, or have been processed. The DMA engine controls BDs in this
* state.
* 4. Processed BDs are retrieved with XEmacEpv_BdRingFromHw() by the
* user. Once retrieved, the user can examine each BD for the outcome of
* the DMA transfer. The user controls BDs in this state. After examining
* the BDs the user calls XEmacPs_BdRingFree() which places the BDs back
* into state 1.
*
* Each of the four BD accessor functions operate on a set of BDs. A set is
* defined as a segment of the BD ring consisting of one or more BDs. The user
* views the set as a pointer to the first BD along with the number of BDs for
* that set. The set can be navigated by using macros XEmacPs_BdNext(). The
* user must exercise extreme caution when changing BDs in a set as there is
* nothing to prevent doing a mBdNext past the end of the set and modifying a
* BD out of bounds.
*
* XEmacPs_BdRingAlloc() + XEmacPs_BdRingToHw(), as well as
* XEmacPs_BdRingFromHw() + XEmacPs_BdRingFree() are designed to be used in
* tandem. The same BD set retrieved with BdRingAlloc should be the same one
* provided to hardware with BdRingToHw. Same goes with BdRingFromHw and
* BdRIngFree.
*
* <b>Alignment & Data Cache Restrictions</b>
*
* Due to the design of the hardware, all RX buffers, BDs need to be 4-byte
* aligned. Please reference xemacps_bd.h for cache related macros.
*
* DMA Tx:
*
* - If frame buffers exist in cached memory, then they must be flushed
* prior to committing them to hardware.
*
* DMA Rx:
*
* - If frame buffers exist in cached memory, then the cache must be
* invalidated for the memory region containing the frame prior to data
* access
*
* Both cache invalidate/flush are taken care of in driver code.
*
* <b>Buffer Copying</b>
*
* The driver is designed for a zero-copy buffer scheme. That is, the driver
* will not copy buffers. This avoids potential throughput bottlenecks within
* the driver. If byte copying is required, then the transfer will take longer
* to complete.
*
* <b>Checksum Offloading</b>
*
* The Embedded Processor Block Ethernet can be configured to perform IP, TCP
* and UDP checksum offloading in both receive and transmit directions.
*
* IP packets contain a 16-bit checksum field, which is the 16-bit 1s
* complement of the 1s complement sum of all 16-bit words in the header.
* TCP and UDP packets contain a 16-bit checksum field, which is the 16-bit
* 1s complement of the 1s complement sum of all 16-bit words in the header,
* the data and a conceptual pseudo header.
*
* To calculate these checksums in software requires each byte of the packet
* to be read. For TCP and UDP this can use a large amount of processing power.
* Offloading the checksum calculation to hardware can result in significant
* performance improvements.
*
* The transmit checksum offload is only available to use DMA in packet buffer
* mode. This is because the complete frame to be transmitted must be read
* into the packet buffer memory before the checksum can be calculated and
* written to the header at the beginning of the frame.
*
* For IP, TCP or UDP receive checksum offload to be useful, the operating
* system containing the protocol stack must be aware that this offload is
* available so that it can make use of the fact that the hardware has verified
* the checksum.
*
* When receive checksum offloading is enabled in the hardware, the IP header
* checksum is checked, where the packet meets the following criteria:
*
* 1. If present, the VLAN header must be four octets long and the CFI bit
* must not be set.
* 2. Encapsulation must be RFC 894 Ethernet Type Encoding or RFC 1042 SNAP
* encoding.
* 3. IP v4 packet.
* 4. IP header is of a valid length.
* 5. Good IP header checksum.
* 6. No IP fragmentation.
* 7. TCP or UDP packet.
*
* When an IP, TCP or UDP frame is received, the receive buffer descriptor
* gives an indication if the hardware was able to verify the checksums.
* There is also an indication if the frame had SNAP encapsulation. These
* indication bits will replace the type ID match indication bits when the
* receive checksum offload is enabled.
*
* If any of the checksums are verified incorrect by the hardware, the packet
* is discarded and the appropriate statistics counter incremented.
*
* <b>PHY Interfaces</b>
*
* RGMII 1.3 is the only interface supported.
*
* <b>Asserts</b>
*
* Asserts are used within all Xilinx drivers to enforce constraints on
* parameters. Asserts can be turned off on a system-wide basis by defining,
* at compile time, the NDEBUG identifier. By default, asserts are turned on
* and it is recommended that users leave asserts on during development. For
* deployment use -DNDEBUG compiler switch to remove assert code.
*
* @note
*
* Xilinx drivers are typically composed of two parts, one is the driver
* and the other is the adapter. The driver is independent of OS and processor
* and is intended to be highly portable. The adapter is OS-specific and
* facilitates communication between the driver and an OS.
* This driver is intended to be RTOS and processor independent. Any needs for
* dynamic memory management, threads or thread mutual exclusion, or cache
* control must be satisfied bythe layer above this driver.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -------------------------------------------------------
* 1.00a wsy 01/10/10 First release
* 1.00a asa 11/21/11 The function XEmacPs_BdRingFromHwTx in file
* xemacps_bdring.c is modified. Earlier it was checking for
* "BdLimit"(passed argument) number of BDs for finding out
* which BDs are successfully processed. Now one more check
* is added. It looks for BDs till the current BD pointer
* reaches HwTail. By doing this processing time is saved.
* 1.00a asa 01/24/12 The function XEmacPs_BdRingFromHwTx in file
* xemacps_bdring.c is modified. Now start of packet is
* searched for returning the number of BDs processed.
* 1.02a asa 11/05/12 Added a new API for deleting an entry from the HASH
* registers. Added a new API to set the bust length.
* Added some new hash-defines.
* 1.03a asa 01/23/12 Fix for CR #692702 which updates error handling for
* Rx errors. Under heavy Rx traffic, there will be a large
* number of errors related to receive buffer not available.
* Because of a HW bug (SI #692601), under such heavy errors,
* the Rx data path can become unresponsive. To reduce the
* probabilities for hitting this HW bug, the SW writes to
* bit 18 to flush a packet from Rx DPRAM immediately. The
* changes for it are done in the function
* XEmacPs_IntrHandler.
* 1.05a asa 09/23/13 Cache operations on BDs are not required and hence
* removed. It is expected that all BDs are allocated in
* from uncached area.
* 1.06a asa 11/02/13 Changed the value for XEMACPS_RXBUF_LEN_MASK from 0x3fff
* to 0x1fff. This fixes the CR#744902.
* Made changes in example file xemacps_example.h to fix compilation
* issues with iarcc compiler.
* 2.0 adk 10/12/13 Updated as per the New Tcl API's
* 2.1 adk 11/08/14 Fixed the CR#811288. Changes are made in the driver tcl file.
* 2.1 bss 09/08/14 Modified driver tcl to fix CR#820349 to export phy
* address in xparameters.h when GMII to RGMII converter
* is present in hw.
* 2.1 srt 07/15/14 Add support for Zynq Ultrascale Mp GEM specification and 64-bit
* changes.
* 2.2 adk 29/10/14 Fixed CR#827686 when PCS/PMA core is configured with
* 1000BASE-X mode export proper values to the xparameters.h
* file. Changes are made in the driver tcl file.
* 3.0 adk 08/1/15 Don't include gem in peripheral test when gem is
* configured with PCS/PMA Core. Changes are made in the
* test app tcl(CR:827686).
* 3.0 kvn 02/13/15 Modified code for MISRA-C:2012 compliance.
* 3.0 hk 03/18/15 Added support for jumbo frames. Increase AHB burst.
* Disable extended mode. Perform all 64 bit changes under
* check for arch64.
* Remove "used bit set" from TX error interrupt masks.
* 3.1 hk 07/27/15 Do not call error handler with '0' error code when
* there is no error. CR# 869403
* </pre>
*
****************************************************************************/
#ifndef XEMACPS_H /* prevent circular inclusions */
#define XEMACPS_H /* by using protection macros */
#ifdef __cplusplus
extern "C" {
#endif
/***************************** Include Files ********************************/
#include "xil_types.h"
#include "xil_assert.h"
#include "xstatus.h"
#include "xemacps_hw.h"
#include "xemacps_bd.h"
#include "xemacps_bdring.h"
/************************** Constant Definitions ****************************/
/*
* Device information
*/
#define XEMACPS_DEVICE_NAME "xemacps"
#define XEMACPS_DEVICE_DESC "Xilinx PS 10/100/1000 MAC"
/** @name Configuration options
*
* Device configuration options. See the XEmacPs_SetOptions(),
* XEmacPs_ClearOptions() and XEmacPs_GetOptions() for information on how to
* use options.
*
* The default state of the options are noted and are what the device and
* driver will be set to after calling XEmacPs_Reset() or
* XEmacPs_Initialize().
*
* @{
*/
#define XEMACPS_PROMISC_OPTION 0x00000001U
/**< Accept all incoming packets.
* This option defaults to disabled (cleared) */
#define XEMACPS_FRAME1536_OPTION 0x00000002U
/**< Frame larger than 1516 support for Tx & Rx.
* This option defaults to disabled (cleared) */
#define XEMACPS_VLAN_OPTION 0x00000004U
/**< VLAN Rx & Tx frame support.
* This option defaults to disabled (cleared) */
#define XEMACPS_FLOW_CONTROL_OPTION 0x00000010U
/**< Enable recognition of flow control frames on Rx
* This option defaults to enabled (set) */
#define XEMACPS_FCS_STRIP_OPTION 0x00000020U
/**< Strip FCS and PAD from incoming frames. Note: PAD from VLAN frames is not
* stripped.
* This option defaults to enabled (set) */
#define XEMACPS_FCS_INSERT_OPTION 0x00000040U
/**< Generate FCS field and add PAD automatically for outgoing frames.
* This option defaults to disabled (cleared) */
#define XEMACPS_LENTYPE_ERR_OPTION 0x00000080U
/**< Enable Length/Type error checking for incoming frames. When this option is
* set, the MAC will filter frames that have a mismatched type/length field
* and if XEMACPS_REPORT_RXERR_OPTION is set, the user is notified when these
* types of frames are encountered. When this option is cleared, the MAC will
* allow these types of frames to be received.
*
* This option defaults to disabled (cleared) */
#define XEMACPS_TRANSMITTER_ENABLE_OPTION 0x00000100U
/**< Enable the transmitter.
* This option defaults to enabled (set) */
#define XEMACPS_RECEIVER_ENABLE_OPTION 0x00000200U
/**< Enable the receiver
* This option defaults to enabled (set) */
#define XEMACPS_BROADCAST_OPTION 0x00000400U
/**< Allow reception of the broadcast address
* This option defaults to enabled (set) */
#define XEMACPS_MULTICAST_OPTION 0x00000800U
/**< Allows reception of multicast addresses programmed into hash
* This option defaults to disabled (clear) */
#define XEMACPS_RX_CHKSUM_ENABLE_OPTION 0x00001000U
/**< Enable the RX checksum offload
* This option defaults to enabled (set) */
#define XEMACPS_TX_CHKSUM_ENABLE_OPTION 0x00002000U
/**< Enable the TX checksum offload
* This option defaults to enabled (set) */
#define XEMACPS_JUMBO_ENABLE_OPTION 0x00004000U
#define XEMACPS_DEFAULT_OPTIONS \
((u32)XEMACPS_FLOW_CONTROL_OPTION | \
(u32)XEMACPS_FCS_INSERT_OPTION | \
(u32)XEMACPS_FCS_STRIP_OPTION | \
(u32)XEMACPS_BROADCAST_OPTION | \
(u32)XEMACPS_LENTYPE_ERR_OPTION | \
(u32)XEMACPS_TRANSMITTER_ENABLE_OPTION | \
(u32)XEMACPS_RECEIVER_ENABLE_OPTION | \
(u32)XEMACPS_RX_CHKSUM_ENABLE_OPTION | \
(u32)XEMACPS_TX_CHKSUM_ENABLE_OPTION)
/**< Default options set when device is initialized or reset */
/*@}*/
/** @name Callback identifiers
*
* These constants are used as parameters to XEmacPs_SetHandler()
* @{
*/
#define XEMACPS_HANDLER_DMASEND 1U
#define XEMACPS_HANDLER_DMARECV 2U
#define XEMACPS_HANDLER_ERROR 3U
/*@}*/
/* Constants to determine the configuration of the hardware device. They are
* used to allow the driver to verify it can operate with the hardware.
*/
#define XEMACPS_MDIO_DIV_DFT MDC_DIV_32 /**< Default MDIO clock divisor */
/* The next few constants help upper layers determine the size of memory
* pools used for Ethernet buffers and descriptor lists.
*/
#define XEMACPS_MAC_ADDR_SIZE 6U /* size of Ethernet header */
#define XEMACPS_MTU 1500U /* max MTU size of Ethernet frame */
#define XEMACPS_MTU_JUMBO 10240U /* max MTU size of jumbo frame */
#define XEMACPS_HDR_SIZE 14U /* size of Ethernet header */
#define XEMACPS_HDR_VLAN_SIZE 18U /* size of Ethernet header with VLAN */
#define XEMACPS_TRL_SIZE 4U /* size of Ethernet trailer (FCS) */
#define XEMACPS_MAX_FRAME_SIZE (XEMACPS_MTU + XEMACPS_HDR_SIZE + \
XEMACPS_TRL_SIZE)
#define XEMACPS_MAX_VLAN_FRAME_SIZE (XEMACPS_MTU + XEMACPS_HDR_SIZE + \
XEMACPS_HDR_VLAN_SIZE + XEMACPS_TRL_SIZE)
#define XEMACPS_MAX_VLAN_FRAME_SIZE_JUMBO (XEMACPS_MTU_JUMBO + XEMACPS_HDR_SIZE + \
XEMACPS_HDR_VLAN_SIZE + XEMACPS_TRL_SIZE)
/* DMACR Bust length hash defines */
#define XEMACPS_SINGLE_BURST 0x00000001
#define XEMACPS_4BYTE_BURST 0x00000004
#define XEMACPS_8BYTE_BURST 0x00000008
#define XEMACPS_16BYTE_BURST 0x00000010
/**************************** Type Definitions ******************************/
/** @name Typedefs for callback functions
*
* These callbacks are invoked in interrupt context.
* @{
*/
/**
* Callback invoked when frame(s) have been sent or received in interrupt
* driven DMA mode. To set the send callback, invoke XEmacPs_SetHandler().
*
* @param CallBackRef is user data assigned when the callback was set.
*
* @note
* See xemacps_hw.h for bitmasks definitions and the device hardware spec for
* further information on their meaning.
*
*/
typedef void (*XEmacPs_Handler) (void *CallBackRef);
/**
* Callback when an asynchronous error occurs. To set this callback, invoke
* XEmacPs_SetHandler() with XEMACPS_HANDLER_ERROR in the HandlerType
* paramter.
*
* @param CallBackRef is user data assigned when the callback was set.
* @param Direction defines either receive or transmit error(s) has occurred.
* @param ErrorWord definition varies with Direction
*
*/
typedef void (*XEmacPs_ErrHandler) (void *CallBackRef, u8 Direction,
u32 ErrorWord);
/*@}*/
/**
* This typedef contains configuration information for a device.
*/
typedef struct {
u16 DeviceId; /**< Unique ID of device */
UINTPTR BaseAddress;/**< Physical base address of IPIF registers */
} XEmacPs_Config;
/**
* The XEmacPs driver instance data. The user is required to allocate a
* structure of this type for every XEmacPs device in the system. A pointer
* to a structure of this type is then passed to the driver API functions.
*/
typedef struct XEmacPs_Instance {
XEmacPs_Config Config; /* Hardware configuration */
u32 IsStarted; /* Device is currently started */
u32 IsReady; /* Device is initialized and ready */
u32 Options; /* Current options word */
XEmacPs_BdRing TxBdRing; /* Transmit BD ring */
XEmacPs_BdRing RxBdRing; /* Receive BD ring */
XEmacPs_Handler SendHandler;
XEmacPs_Handler RecvHandler;
void *SendRef;
void *RecvRef;
XEmacPs_ErrHandler ErrorHandler;
void *ErrorRef;
u32 Version;
u32 RxBufMask;
u32 MaxMtuSize;
u32 MaxFrameSize;
u32 MaxVlanFrameSize;
} XEmacPs;
/***************** Macros (Inline Functions) Definitions ********************/
/****************************************************************************/
/**
* Retrieve the Tx ring object. This object can be used in the various Ring
* API functions.
*
* @param InstancePtr is the DMA channel to operate on.
*
* @return TxBdRing attribute
*
* @note
* C-style signature:
* XEmacPs_BdRing XEmacPs_GetTxRing(XEmacPs *InstancePtr)
*
*****************************************************************************/
#define XEmacPs_GetTxRing(InstancePtr) ((InstancePtr)->TxBdRing)
/****************************************************************************/
/**
* Retrieve the Rx ring object. This object can be used in the various Ring
* API functions.
*
* @param InstancePtr is the DMA channel to operate on.
*
* @return RxBdRing attribute
*
* @note
* C-style signature:
* XEmacPs_BdRing XEmacPs_GetRxRing(XEmacPs *InstancePtr)
*
*****************************************************************************/
#define XEmacPs_GetRxRing(InstancePtr) ((InstancePtr)->RxBdRing)
/****************************************************************************/
/**
*
* Enable interrupts specified in <i>Mask</i>. The corresponding interrupt for
* each bit set to 1 in <i>Mask</i>, will be enabled.
*
* @param InstancePtr is a pointer to the instance to be worked on.
* @param Mask contains a bit mask of interrupts to enable. The mask can
* be formed using a set of bitwise or'd values.
*
* @note
* The state of the transmitter and receiver are not modified by this function.
* C-style signature
* void XEmacPs_IntEnable(XEmacPs *InstancePtr, u32 Mask)
*
*****************************************************************************/
#define XEmacPs_IntEnable(InstancePtr, Mask) \
XEmacPs_WriteReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_IER_OFFSET, \
((Mask) & XEMACPS_IXR_ALL_MASK));
/****************************************************************************/
/**
*
* Disable interrupts specified in <i>Mask</i>. The corresponding interrupt for
* each bit set to 1 in <i>Mask</i>, will be enabled.
*
* @param InstancePtr is a pointer to the instance to be worked on.
* @param Mask contains a bit mask of interrupts to disable. The mask can
* be formed using a set of bitwise or'd values.
*
* @note
* The state of the transmitter and receiver are not modified by this function.
* C-style signature
* void XEmacPs_IntDisable(XEmacPs *InstancePtr, u32 Mask)
*
*****************************************************************************/
#define XEmacPs_IntDisable(InstancePtr, Mask) \
XEmacPs_WriteReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_IDR_OFFSET, \
((Mask) & XEMACPS_IXR_ALL_MASK));
/****************************************************************************/
/**
*
* Enable interrupts specified in <i>Mask</i>. The corresponding interrupt for
* each bit set to 1 in <i>Mask</i>, will be enabled.
*
* @param InstancePtr is a pointer to the instance to be worked on.
* @param Mask contains a bit mask of interrupts to enable. The mask can
* be formed using a set of bitwise or'd values.
*
* @note
* The state of the transmitter and receiver are not modified by this function.
* C-style signature
* void XEmacPs_IntQ1Enable(XEmacPs *InstancePtr, u32 Mask)
*
*****************************************************************************/
#define XEmacPs_IntQ1Enable(InstancePtr, Mask) \
XEmacPs_WriteReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_INTQ1_IER_OFFSET, \
((Mask) & XEMACPS_INTQ1_IXR_ALL_MASK));
/****************************************************************************/
/**
*
* Disable interrupts specified in <i>Mask</i>. The corresponding interrupt for
* each bit set to 1 in <i>Mask</i>, will be enabled.
*
* @param InstancePtr is a pointer to the instance to be worked on.
* @param Mask contains a bit mask of interrupts to disable. The mask can
* be formed using a set of bitwise or'd values.
*
* @note
* The state of the transmitter and receiver are not modified by this function.
* C-style signature
* void XEmacPs_IntDisable(XEmacPs *InstancePtr, u32 Mask)
*
*****************************************************************************/
#define XEmacPs_IntQ1Disable(InstancePtr, Mask) \
XEmacPs_WriteReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_INTQ1_IDR_OFFSET, \
((Mask) & XEMACPS_INTQ1_IXR_ALL_MASK));
/****************************************************************************/
/**
*
* This macro triggers trasmit circuit to send data currently in TX buffer(s).
*
* @param InstancePtr is a pointer to the XEmacPs instance to be worked on.
*
* @return
*
* @note
*
* Signature: void XEmacPs_Transmit(XEmacPs *InstancePtr)
*
*****************************************************************************/
#define XEmacPs_Transmit(InstancePtr) \
XEmacPs_WriteReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_NWCTRL_OFFSET, \
(XEmacPs_ReadReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_NWCTRL_OFFSET) | XEMACPS_NWCTRL_STARTTX_MASK))
/****************************************************************************/
/**
*
* This macro determines if the device is configured with checksum offloading
* on the receive channel
*
* @param InstancePtr is a pointer to the XEmacPs instance to be worked on.
*
* @return
*
* Boolean TRUE if the device is configured with checksum offloading, or
* FALSE otherwise.
*
* @note
*
* Signature: u32 XEmacPs_IsRxCsum(XEmacPs *InstancePtr)
*
*****************************************************************************/
#define XEmacPs_IsRxCsum(InstancePtr) \
((XEmacPs_ReadReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_NWCFG_OFFSET) & XEMACPS_NWCFG_RXCHKSUMEN_MASK) != 0U \
? TRUE : FALSE)
/****************************************************************************/
/**
*
* This macro determines if the device is configured with checksum offloading
* on the transmit channel
*
* @param InstancePtr is a pointer to the XEmacPs instance to be worked on.
*
* @return
*
* Boolean TRUE if the device is configured with checksum offloading, or
* FALSE otherwise.
*
* @note
*
* Signature: u32 XEmacPs_IsTxCsum(XEmacPs *InstancePtr)
*
*****************************************************************************/
#define XEmacPs_IsTxCsum(InstancePtr) \
((XEmacPs_ReadReg((InstancePtr)->Config.BaseAddress, \
XEMACPS_DMACR_OFFSET) & XEMACPS_DMACR_TCPCKSUM_MASK) != 0U \
? TRUE : FALSE)
/************************** Function Prototypes *****************************/
/*
* Initialization functions in xemacps.c
*/
LONG XEmacPs_CfgInitialize(XEmacPs *InstancePtr, XEmacPs_Config *CfgPtr,
UINTPTR EffectiveAddress);
void XEmacPs_Start(XEmacPs *InstancePtr);
void XEmacPs_Stop(XEmacPs *InstancePtr);
void XEmacPs_Reset(XEmacPs *InstancePtr);
void XEmacPs_SetQueuePtr(XEmacPs *InstancePtr, UINTPTR QPtr, u8 QueueNum,
u16 Direction);
/*
* Lookup configuration in xemacps_sinit.c
*/
XEmacPs_Config *XEmacPs_LookupConfig(u16 DeviceId);
/*
* Interrupt-related functions in xemacps_intr.c
* DMA only and FIFO is not supported. This DMA does not support coalescing.
*/
LONG XEmacPs_SetHandler(XEmacPs *InstancePtr, u32 HandlerType,
void *FuncPointer, void *CallBackRef);
void XEmacPs_IntrHandler(void *XEmacPsPtr);
/*
* MAC configuration/control functions in XEmacPs_control.c
*/
LONG XEmacPs_SetOptions(XEmacPs *InstancePtr, u32 Options);
LONG XEmacPs_ClearOptions(XEmacPs *InstancePtr, u32 Options);
u32 XEmacPs_GetOptions(XEmacPs *InstancePtr);
LONG XEmacPs_SetMacAddress(XEmacPs *InstancePtr, void *AddressPtr, u8 Index);
LONG XEmacPs_DeleteHash(XEmacPs *InstancePtr, void *AddressPtr);
void XEmacPs_GetMacAddress(XEmacPs *InstancePtr, void *AddressPtr, u8 Index);
LONG XEmacPs_SetHash(XEmacPs *InstancePtr, void *AddressPtr);
void XEmacPs_ClearHash(XEmacPs *InstancePtr);
void XEmacPs_GetHash(XEmacPs *InstancePtr, void *AddressPtr);
void XEmacPs_SetMdioDivisor(XEmacPs *InstancePtr,
XEmacPs_MdcDiv Divisor);
void XEmacPs_SetOperatingSpeed(XEmacPs *InstancePtr, u16 Speed);
u16 XEmacPs_GetOperatingSpeed(XEmacPs *InstancePtr);
LONG XEmacPs_PhyRead(XEmacPs *InstancePtr, u32 PhyAddress,
u32 RegisterNum, u16 *PhyDataPtr);
LONG XEmacPs_PhyWrite(XEmacPs *InstancePtr, u32 PhyAddress,
u32 RegisterNum, u16 PhyData);
LONG XEmacPs_SetTypeIdCheck(XEmacPs *InstancePtr, u32 Id_Check, u8 Index);
LONG XEmacPs_SendPausePacket(XEmacPs *InstancePtr);
void XEmacPs_DMABLengthUpdate(XEmacPs *InstancePtr, s32 BLength);
#ifdef __cplusplus
}
#endif
#endif /* end of protection macro */
/** @} */