embeddedsw/XilinxProcessorIPLib/drivers/qspips/examples/xqspips_flash_polled_example.c
Jagannadha Sutradharudu Teki 2c8f92039d embeddesw: Add initial code support
Added initial support Xilinx Embedded Software.

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
2014-06-24 16:45:01 +05:30

808 lines
24 KiB
C
Executable file

/******************************************************************************
*
* Copyright (C) 2010 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xqspips_flash_polled_example.c
*
*
* This file contains a design example using the QSPI driver (XQspiPs) in
* polled mode with a serial FLASH device. This examples performs
* some transfers in Auto mode and Manual start mode, to illustrate the modes
* available. It is recommended to use Manual CS + Auto start for
* best performance.
* The hardware which this example runs on. must have a serial FLASH (Numonyx
* N25Q, Winbond W25Q, or Spansion S25FL) for it to run. This example has been
* tested with the Numonyx Serial Flash (N25Q128).
*
* @note
*
* None.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- --- -------- -----------------------------------------------
* 1.00 sdm 11/25/10 First release
* 1.01 srt 06/12/12 Changed to meet frequency requirements of READ command
* for CR 663787
* 2.00a kka 22/08/12 Updated the example as XQspiPs_PolledTransfer API has
* changed. Changed the prescalar to use divide by 8.
* The user can change the prescalar to a maximum of
* divide by 2 based on the reference clock in the
* system.
* Set the Holdb_dr bit in the configuration register using
* XQSPIPS_HOLD_B_DRIVE_OPTION. Setting this bit
* drives the HOLD bit of the QSPI controller.
* This is required for QSPI to be used in Non QSPI boot
* mode else there needs to be an external pullup on this
* line.
* See http://www.xilinx.com/support/answers/47596.htm.
* 2.01a sg 02/03/13 Created a function FlashReadID. Removed multiple
* initialization using SetOptions.
*
*</pre>
*
******************************************************************************/
/***************************** Include Files *********************************/
#include "xparameters.h" /* SDK generated parameters */
#include "xqspips.h" /* QSPI device driver */
#include "xil_printf.h"
/************************** Constant Definitions *****************************/
/*
* The following constants map to the XPAR parameters created in the
* xparameters.h file. They are defined here such that a user can easily
* change all the needed parameters in one place.
*/
#define QSPI_DEVICE_ID XPAR_XQSPIPS_0_DEVICE_ID
/*
* The following constants define the commands which may be sent to the FLASH
* device.
*/
#define WRITE_STATUS_CMD 0x01
#define WRITE_CMD 0x02
#define READ_CMD 0x03
#define WRITE_DISABLE_CMD 0x04
#define READ_STATUS_CMD 0x05
#define WRITE_ENABLE_CMD 0x06
#define FAST_READ_CMD 0x0B
#define DUAL_READ_CMD 0x3B
#define QUAD_READ_CMD 0x6B
#define BULK_ERASE_CMD 0xC7
#define SEC_ERASE_CMD 0xD8
#define READ_ID 0x9F
/*
* The following constants define the offsets within a FlashBuffer data
* type for each kind of data. Note that the read data offset is not the
* same as the write data because the QSPI driver is designed to allow full
* duplex transfers such that the number of bytes received is the number
* sent and received.
*/
#define COMMAND_OFFSET 0 /* FLASH instruction */
#define ADDRESS_1_OFFSET 1 /* MSB byte of address to read or write */
#define ADDRESS_2_OFFSET 2 /* Middle byte of address to read or write */
#define ADDRESS_3_OFFSET 3 /* LSB byte of address to read or write */
#define DATA_OFFSET 4 /* Start of Data for Read/Write */
#define DUMMY_OFFSET 4 /* Dummy byte offset for fast, dual and quad
reads */
#define DUMMY_SIZE 1 /* Number of dummy bytes for fast, dual and
quad reads */
#define RD_ID_SIZE 4 /* Read ID command + 3 bytes ID response */
#define BULK_ERASE_SIZE 1 /* Bulk Erase command size */
#define SEC_ERASE_SIZE 4 /* Sector Erase command + Sector address */
/*
* The following constants specify the extra bytes which are sent to the
* FLASH on the QSPI interface, that are not data, but control information
* which includes the command and address
*/
#define OVERHEAD_SIZE 4
/*
* The following constants specify the page size, sector size, and number of
* pages and sectors for the FLASH. The page size specifies a max number of
* bytes that can be written to the FLASH with a single transfer.
*/
#define SECTOR_SIZE 0x10000
#define NUM_SECTORS 0x100
#define NUM_PAGES 0x10000
#define PAGE_SIZE 256
/*
* Number of flash pages to be written.
*/
#define PAGE_COUNT 16
/*
* Flash address to which data is ot be written.
*/
#define TEST_ADDRESS 0x00055000
#define UNIQUE_VALUE 0x05
/*
* The following constants specify the max amount of data and the size of the
* the buffer required to hold the data and overhead to transfer the data to
* and from the FLASH.
*/
#define MAX_DATA PAGE_COUNT * PAGE_SIZE
/**************************** Type Definitions *******************************/
/***************** Macros (Inline Functions) Definitions *********************/
/************************** Function Prototypes ******************************/
void FlashErase(XQspiPs *QspiPtr, u32 Address, u32 ByteCount);
void FlashWrite(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command);
void FlashRead(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command);
int FlashReadID(void);
int QspiFlashPolledExample(XQspiPs *QspiInstancePtr, u16 QspiDeviceId);
/************************** Variable Definitions *****************************/
/*
* The instances to support the device drivers are global such that they
* are initialized to zero each time the program runs. They could be local
* but should at least be static so they are zeroed.
*/
static XQspiPs QspiInstance;
/*
* The following variable allows a test value to be added to the values that
* are written to the FLASH such that unique values can be generated to
* guarantee the writes to the FLASH were successful
*/
int Test = 5;
/*
* The following variables are used to read and write to the flash and they
* are global to avoid having large buffers on the stack
*/
u8 ReadBuffer[MAX_DATA + DATA_OFFSET + DUMMY_SIZE];
u8 WriteBuffer[PAGE_SIZE + DATA_OFFSET];
/*****************************************************************************/
/**
*
* Main function to call the QSPI Flash example.
*
* @param None
*
* @return XST_SUCCESS if successful, otherwise XST_FAILURE.
*
* @note None
*
******************************************************************************/
int main(void)
{
int Status;
xil_printf("QSPI FLASH Polled Example Test \r\n");
/*
* Run the Qspi Interrupt example.
*/
Status = QspiFlashPolledExample(&QspiInstance, QSPI_DEVICE_ID);
if (Status != XST_SUCCESS) {
xil_printf("QSPI FLASH Polled Example Test Failed\r\n");
return XST_FAILURE;
}
xil_printf("Successfully ran QSPI FLASH Polled Example Test\r\n");
return XST_SUCCESS;
}
/*****************************************************************************
*
* The purpose of this function is to illustrate how to use the XQspiPs
* device driver in polled mode. This function writes and reads data
* from a serial FLASH.
*
* @param None.
*
* @return XST_SUCCESS if successful, else XST_FAILURE.
*
* @note None.
*
*****************************************************************************/
int QspiFlashPolledExample(XQspiPs *QspiInstancePtr, u16 QspiDeviceId)
{
int Status;
u8 *BufferPtr;
u8 UniqueValue;
int Count;
int Page;
XQspiPs_Config *QspiConfig;
/*
* Initialize the QSPI driver so that it's ready to use
*/
QspiConfig = XQspiPs_LookupConfig(QspiDeviceId);
if (NULL == QspiConfig) {
return XST_FAILURE;
}
Status = XQspiPs_CfgInitialize(QspiInstancePtr, QspiConfig,
QspiConfig->BaseAddress);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Perform a self-test to check hardware build
*/
Status = XQspiPs_SelfTest(QspiInstancePtr);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
/*
* Initialize the write buffer for a pattern to write to the FLASH
* and the read buffer to zero so it can be verified after the read,
* the test value that is added to the unique value allows the value
* to be changed in a debug environment to guarantee
*/
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < PAGE_SIZE;
Count++, UniqueValue++) {
WriteBuffer[DATA_OFFSET + Count] = (u8)(UniqueValue + Test);
}
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
/*
* Set Manual Start and Manual Chip select options and drive HOLD_B
* pin high.
*/
XQspiPs_SetOptions(QspiInstancePtr, XQSPIPS_MANUAL_START_OPTION |
XQSPIPS_FORCE_SSELECT_OPTION |
XQSPIPS_HOLD_B_DRIVE_OPTION);
/*
* Set the prescaler for QSPI clock
*/
XQspiPs_SetClkPrescaler(QspiInstancePtr, XQSPIPS_CLK_PRESCALE_8);
/*
* Assert the FLASH chip select.
*/
XQspiPs_SetSlaveSelect(QspiInstancePtr);
FlashReadID();
/*
* Erase the flash.
*/
FlashErase(QspiInstancePtr, TEST_ADDRESS, MAX_DATA);
/*
* Write the data in the write buffer to the serial FLASH a page at a
* time, starting from TEST_ADDRESS
*/
for (Page = 0; Page < PAGE_COUNT; Page++) {
FlashWrite(QspiInstancePtr, (Page * PAGE_SIZE) + TEST_ADDRESS,
PAGE_SIZE, WRITE_CMD);
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Normal Read
* command. Change the prescaler as the READ command operates at a
* lower frequency.
*/
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Fast Read
* command
*/
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, FAST_READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET + DUMMY_SIZE];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Dual Read
* command
*/
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, DUAL_READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET + DUMMY_SIZE];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Quad Read
* command
*/
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, QUAD_READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET + DUMMY_SIZE];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Initialize the write buffer for a pattern to write to the FLASH
* and the read buffer to zero so it can be verified after the read,
* the test value that is added to the unique value allows the value
* to be changed in a debug environment to guarantee
*/
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < PAGE_SIZE;
Count++, UniqueValue++) {
WriteBuffer[DATA_OFFSET + Count] = (u8)(UniqueValue + Test);
}
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
/*
* Set Auto Start and Manual Chip select options and drive HOLD_B
* pin high.
*/
XQspiPs_SetOptions(QspiInstancePtr, XQSPIPS_FORCE_SSELECT_OPTION |
XQSPIPS_HOLD_B_DRIVE_OPTION);
/*
* Erase the flash.
*/
FlashErase(QspiInstancePtr, TEST_ADDRESS, MAX_DATA);
/*
* Write the data in the write buffer to the serial FLASH a page at a
* time, starting from TEST_ADDRESS
*/
for (Page = 0; Page < PAGE_COUNT; Page++) {
FlashWrite(QspiInstancePtr, (Page * PAGE_SIZE) + TEST_ADDRESS,
PAGE_SIZE, WRITE_CMD);
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Normal Read
* command. Change the prescaler as the READ command operates at a
* lower frequency.
*/
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Fast Read
* command
*/
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, FAST_READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET + DUMMY_SIZE];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Dual Read
* command
*/
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, DUAL_READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET + DUMMY_SIZE];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
/*
* Read the contents of the FLASH from TEST_ADDRESS, using Quad Read
* command
*/
memset(ReadBuffer, 0x00, sizeof(ReadBuffer));
FlashRead(QspiInstancePtr, TEST_ADDRESS, MAX_DATA, QUAD_READ_CMD);
/*
* Setup a pointer to the start of the data that was read into the read
* buffer and verify the data read is the data that was written
*/
BufferPtr = &ReadBuffer[DATA_OFFSET + DUMMY_SIZE];
for (UniqueValue = UNIQUE_VALUE, Count = 0; Count < MAX_DATA;
Count++, UniqueValue++) {
if (BufferPtr[Count] != (u8)(UniqueValue + Test)) {
return XST_FAILURE;
}
}
return XST_SUCCESS;
}
/******************************************************************************
*
*
* This function writes to the serial FLASH connected to the QSPI interface.
* All the data put into the buffer must be in the same page of the device with
* page boundaries being on 256 byte boundaries.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address contains the address to write data to in the FLASH.
* @param ByteCount contains the number of bytes to write.
* @param Command is the command used to write data to the flash. QSPI
* device supports only Page Program command to write data to the
* flash.
*
* @return None.
*
* @note None.
*
******************************************************************************/
void FlashWrite(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
u8 ReadStatusCmd[] = { READ_STATUS_CMD, 0 }; /* must send 2 bytes */
u8 FlashStatus[2];
/*
* Send the write enable command to the FLASH so that it can be
* written to, this needs to be sent as a seperate transfer before
* the write
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the write command with the specified address and data for the
* FLASH
*/
WriteBuffer[COMMAND_OFFSET] = Command;
WriteBuffer[ADDRESS_1_OFFSET] = (u8)((Address & 0xFF0000) >> 16);
WriteBuffer[ADDRESS_2_OFFSET] = (u8)((Address & 0xFF00) >> 8);
WriteBuffer[ADDRESS_3_OFFSET] = (u8)(Address & 0xFF);
/*
* Send the write command, address, and data to the FLASH to be
* written, no receive buffer is specified since there is nothing to
* receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBuffer, NULL,
ByteCount + OVERHEAD_SIZE);
/*
* Wait for the write command to the FLASH to be completed, it takes
* some time for the data to be written
*/
while (1) {
/*
* Poll the status register of the FLASH to determine when it
* completes, by sending a read status command and receiving the
* status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadStatusCmd, FlashStatus,
sizeof(ReadStatusCmd));
/*
* If the status indicates the write is done, then stop waiting,
* if a value of 0xFF in the status byte is read from the
* device and this loop never exits, the device slave select is
* possibly incorrect such that the device status is not being
* read
*/
if ((FlashStatus[1] & 0x01) == 0) {
break;
}
}
}
/******************************************************************************
*
* This function reads from the serial FLASH connected to the
* QSPI interface.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address contains the address to read data from in the FLASH.
* @param ByteCount contains the number of bytes to read.
* @param Command is the command used to read data from the flash. QSPI
* device supports one of the Read, Fast Read, Dual Read and Fast
* Read commands to read data from the flash.
*
* @return None.
*
* @note None.
*
******************************************************************************/
void FlashRead(XQspiPs *QspiPtr, u32 Address, u32 ByteCount, u8 Command)
{
/*
* Setup the write command with the specified address and data for the
* FLASH
*/
WriteBuffer[COMMAND_OFFSET] = Command;
WriteBuffer[ADDRESS_1_OFFSET] = (u8)((Address & 0xFF0000) >> 16);
WriteBuffer[ADDRESS_2_OFFSET] = (u8)((Address & 0xFF00) >> 8);
WriteBuffer[ADDRESS_3_OFFSET] = (u8)(Address & 0xFF);
if ((Command == FAST_READ_CMD) || (Command == DUAL_READ_CMD) ||
(Command == QUAD_READ_CMD)) {
ByteCount += DUMMY_SIZE;
}
/*
* Send the read command to the FLASH to read the specified number
* of bytes from the FLASH, send the read command and address and
* receive the specified number of bytes of data in the data buffer
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBuffer, ReadBuffer,
ByteCount + OVERHEAD_SIZE);
}
/******************************************************************************
*
*
* This function erases the sectors in the serial FLASH connected to the
* QSPI interface.
*
* @param QspiPtr is a pointer to the QSPI driver component to use.
* @param Address contains the address of the first sector which needs to
* be erased.
* @param ByteCount contains the total size to be erased.
*
* @return None.
*
* @note None.
*
******************************************************************************/
void FlashErase(XQspiPs *QspiPtr, u32 Address, u32 ByteCount)
{
u8 WriteEnableCmd = { WRITE_ENABLE_CMD };
u8 ReadStatusCmd[] = { READ_STATUS_CMD, 0 }; /* must send 2 bytes */
u8 FlashStatus[2];
int Sector;
/*
* If erase size is same as the total size of the flash, use bulk erase
* command
*/
if (ByteCount == (NUM_SECTORS * SECTOR_SIZE)) {
/*
* Send the write enable command to the FLASH so that it can be
* written to, this needs to be sent as a seperate transfer
* before the erase
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the bulk erase command
*/
WriteBuffer[COMMAND_OFFSET] = BULK_ERASE_CMD;
/*
* Send the bulk erase command; no receive buffer is specified
* since there is nothing to receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBuffer, NULL,
BULK_ERASE_SIZE);
/*
* Wait for the erase command to the FLASH to be completed
*/
while (1) {
/*
* Poll the status register of the device to determine
* when it completes, by sending a read status command
* and receiving the status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadStatusCmd,
FlashStatus,
sizeof(ReadStatusCmd));
/*
* If the status indicates the write is done, then stop
* waiting; if a value of 0xFF in the status byte is
* read from the device and this loop never exits, the
* device slave select is possibly incorrect such that
* the device status is not being read
*/
if ((FlashStatus[1] & 0x01) == 0) {
break;
}
}
return;
}
/*
* If the erase size is less than the total size of the flash, use
* sector erase command
*/
for (Sector = 0; Sector < ((ByteCount / SECTOR_SIZE) + 1); Sector++) {
/*
* Send the write enable command to the SEEPOM so that it can be
* written to, this needs to be sent as a seperate transfer
* before the write
*/
XQspiPs_PolledTransfer(QspiPtr, &WriteEnableCmd, NULL,
sizeof(WriteEnableCmd));
/*
* Setup the write command with the specified address and data
* for the FLASH
*/
WriteBuffer[COMMAND_OFFSET] = SEC_ERASE_CMD;
WriteBuffer[ADDRESS_1_OFFSET] = (u8)(Address >> 16);
WriteBuffer[ADDRESS_2_OFFSET] = (u8)(Address >> 8);
WriteBuffer[ADDRESS_3_OFFSET] = (u8)(Address & 0xFF);
/*
* Send the sector erase command and address; no receive buffer
* is specified since there is nothing to receive
*/
XQspiPs_PolledTransfer(QspiPtr, WriteBuffer, NULL,
SEC_ERASE_SIZE);
/*
* Wait for the sector erse command to the FLASH to be completed
*/
while (1) {
/*
* Poll the status register of the device to determine
* when it completes, by sending a read status command
* and receiving the status byte
*/
XQspiPs_PolledTransfer(QspiPtr, ReadStatusCmd,
FlashStatus,
sizeof(ReadStatusCmd));
/*
* If the status indicates the write is done, then stop
* waiting, if a value of 0xFF in the status byte is
* read from the device and this loop never exits, the
* device slave select is possibly incorrect such that
* the device status is not being read
*/
if ((FlashStatus[1] & 0x01) == 0) {
break;
}
}
Address += SECTOR_SIZE;
}
}
/******************************************************************************
*
* This function reads serial FLASH ID connected to the SPI interface.
*
* @param None.
*
* @return XST_SUCCESS if read id, otherwise XST_FAILURE.
*
* @note None.
*
******************************************************************************/
int FlashReadID(void)
{
int Status;
/*
* Read ID in Auto mode.
*/
WriteBuffer[COMMAND_OFFSET] = READ_ID;
WriteBuffer[ADDRESS_1_OFFSET] = 0x23; /* 3 dummy bytes */
WriteBuffer[ADDRESS_2_OFFSET] = 0x08;
WriteBuffer[ADDRESS_3_OFFSET] = 0x09;
Status = XQspiPs_PolledTransfer(&QspiInstance, WriteBuffer, ReadBuffer,
RD_ID_SIZE);
if (Status != XST_SUCCESS) {
return XST_FAILURE;
}
xil_printf("FlashID=0x%x 0x%x 0x%x\n\r", ReadBuffer[1], ReadBuffer[2],
ReadBuffer[3]);
return XST_SUCCESS;
}