embeddedsw/XilinxProcessorIPLib/drivers/common/src/xutil_memtest.c
Jagannadha Sutradharudu Teki 2c8f92039d embeddesw: Add initial code support
Added initial support Xilinx Embedded Software.

Signed-off-by: Jagannadha Sutradharudu Teki <jaganna@xilinx.com>
2014-06-24 16:45:01 +05:30

1183 lines
22 KiB
C
Executable file

/******************************************************************************
*
* Copyright (C) 2002 - 2014 Xilinx, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* Use of the Software is limited solely to applications:
* (a) running on a Xilinx device, or
* (b) that interact with a Xilinx device through a bus or interconnect.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* XILINX CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the Xilinx shall not be used
* in advertising or otherwise to promote the sale, use or other dealings in
* this Software without prior written authorization from Xilinx.
*
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xutil_memtest.c
*
* Contains the memory test utility functions.
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a ecm 11/01/01 First release
* 1.00a xd 11/03/04 Improved support for doxygen.
* </pre>
*
*****************************************************************************/
/***************************** Include Files ********************************/
#include "xbasic_types.h"
#include "xstatus.h"
#include "xutil.h"
/************************** Constant Definitions ****************************/
/************************** Function Prototypes *****************************/
static u32 RotateLeft(u32 Input, u8 Width);
/* define ROTATE_RIGHT to give access to this functionality */
/* #define ROTATE_RIGHT */
#ifdef ROTATE_RIGHT
static u32 RotateRight(u32 Input, u8 Width);
#endif /* ROTATE_RIGHT */
/*****************************************************************************/
/**
*
* Performs a destructive 32-bit wide memory test.
*
* @param Addr is a pointer to the region of memory to be tested.
* @param Words is the length of the block.
* @param Pattern is the constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest is the test selected. See xutil.h for possible values.
*
* @return
*
* - XST_MEMTEST_FAILED is returned for a failure
* - XST_SUCCESS is returned for a pass
*
* @note
*
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** width,
* the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a
* boundry of a power of two making it more difficult to detect addressing
* errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same
* problem. Ideally, if large blocks of memory are to be tested, break
* them up into smaller regions of memory to allow the test patterns used
* not to repeat over the region tested.
*
*****************************************************************************/
int XUtil_MemoryTest32(u32 *Addr, u32 Words, u32 Pattern, u8 Subtest)
{
u32 i;
u32 j;
u32 Val = XUT_MEMTEST_INIT_VALUE;
u32 FirstVal = XUT_MEMTEST_INIT_VALUE;
u32 Word;
XASSERT_NONVOID(Words != 0);
XASSERT_NONVOID(Subtest <= XUT_MAXTEST);
/*
* Select the proper Subtest
*/
switch (Subtest) {
case XUT_ALLMEMTESTS:
/* this case executes all of the Subtests */
/* fall through case statement */
case XUT_INCREMENT:
{
/*
* Fill the memory with incrementing
* values starting from 'FirstVal'
*/
for (i = 0L; i < Words; i++) {
Addr[i] = Val;
/* write memory location */
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = FirstVal;
/*
* Check every word within the Words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (i = 0L; i < Words; i++) {
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val++;
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 1 */
/* fall through case statement */
case XUT_WALKONES:
{
/*
* set up to cycle through all possible initial
* test Patterns for walking ones test
*/
for (j = 0L; j < 32; j++) {
/*
* Generate an initial value for walking ones test to test for bad
* data bits
*/
Val = 1 << j;
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (i = 0L; i < 32; i++) {
/* write memory location */
Addr[i] = Val;
Val = (u32) RotateLeft(Val, 32);
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = 1 << j;
/* Read the values from each location that was written */
for (i = 0L; i < 32; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val = (u32) RotateLeft(Val, 32);
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 2 */
/* fall through case statement */
case XUT_WALKZEROS:
{
/*
* set up to cycle through all possible
* initial test Patterns for walking zeros test
*/
for (j = 0L; j < 32; j++) {
/*
* Generate an initial value for walking ones test to test for
* bad data bits
*/
Val = ~(1 << j);
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (i = 0L; i < 32; i++) {
/* write memory location */
Addr[i] = Val;
Val = ~((u32) RotateLeft(~Val, 32));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = ~(1 << j);
/* Read the values from each location that was written */
for (i = 0L; i < 32; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val = ~((u32) RotateLeft(~Val, 32));
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 3 */
/* fall through case statement */
case XUT_INVERSEADDR:
{
/* Fill the memory with inverse of address */
for (i = 0L; i < Words; i++) {
/* write memory location */
Val = (u32) (~((u32) (&Addr[i])));
Addr[i] = Val;
}
/*
* Check every word within the Words
* of tested memory
*/
for (i = 0L; i < Words; i++) {
/* Read the location */
Word = Addr[i];
Val = (u32) (~((u32) (&Addr[i])));
if ((Word ^ Val) != 0x00000000) {
return XST_MEMTEST_FAILED;
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 4 */
/* fall through case statement */
case XUT_FIXEDPATTERN:
{
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == 0) {
Val = 0xDEADBEEF;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed pattern
*/
for (i = 0L; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
}
/*
* Check every word within the Words
* of tested memory and compare it
* with the fixed pattern
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 5 */
/* this break is for the prior fall through case statements */
break;
default:
{
return XST_MEMTEST_FAILED;
}
} /* end of switch */
/* Successfully passed memory test ! */
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Performs a destructive 16-bit wide memory test.
*
* @param Addr is a pointer to the region of memory to be tested.
* @param Words is the length of the block.
* @param Pattern is the constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest is the test selected. See xutil.h for possible values.
*
* @return
*
* - XST_MEMTEST_FAILED is returned for a failure
* - XST_SUCCESS is returned for a pass
*
* @note
*
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** width,
* the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a
* boundry of a power of two making it more difficult to detect addressing
* errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same
* problem. Ideally, if large blocks of memory are to be tested, break
* them up into smaller regions of memory to allow the test patterns used
* not to repeat over the region tested.
*
*****************************************************************************/
int XUtil_MemoryTest16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest)
{
u32 i;
u32 j;
u16 Val = XUT_MEMTEST_INIT_VALUE;
u16 FirstVal = XUT_MEMTEST_INIT_VALUE;
u16 Word;
XASSERT_NONVOID(Words != 0);
XASSERT_NONVOID(Subtest <= XUT_MAXTEST);
/*
* selectthe proper Subtest(s)
*/
switch (Subtest) {
case XUT_ALLMEMTESTS:
/* this case executes all of the Subtests */
/* fall through case statement */
case XUT_INCREMENT:
{
/*
* Fill the memory with incrementing
* values starting from 'FirstVal'
*/
for (i = 0L; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = FirstVal;
/*
* Check every word within the Words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val++;
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 1 */
/* fall through case statement */
case XUT_WALKONES:
{
/*
* set up to cycle through all possible initial test
* Patterns for walking ones test
*/
for (j = 0L; j < 16; j++) {
/*
* Generate an initial value for walking ones test to test for bad
* data bits
*/
Val = 1 << j;
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (i = 0L; i < 16; i++) {
/* write memory location */
Addr[i] = Val;
Val = (u16) RotateLeft(Val, 16);
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = 1 << j;
/* Read the values from each location that was written */
for (i = 0L; i < 16; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val = (u16) RotateLeft(Val, 16);
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 2 */
/* fall through case statement */
case XUT_WALKZEROS:
{
/*
* set up to cycle through all possible initial
* test Patterns for walking zeros test
*/
for (j = 0L; j < 16; j++) {
/*
* Generate an initial value for walking ones
* test to test for bad
* data bits
*/
Val = ~(1 << j);
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (i = 0L; i < 16; i++) {
/* write memory location */
Addr[i] = Val;
Val = ~((u16) RotateLeft(~Val, 16));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = ~(1 << j);
/* Read the values from each location that was written */
for (i = 0L; i < 16; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val = ~((u16) RotateLeft(~Val, 16));
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 3 */
/* fall through case statement */
case XUT_INVERSEADDR:
{
/* Fill the memory with inverse of address */
for (i = 0L; i < Words; i++) {
/* write memory location */
Val = (u16) (~((u32) (&Addr[i])));
Addr[i] = Val;
}
/*
* Check every word within the Words
* of tested memory
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
Val = (u16) (~((u32) (&Addr[i])));
if ((Word ^ Val) != 0x0000) {
return XST_MEMTEST_FAILED;
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 4 */
/* fall through case statement */
case XUT_FIXEDPATTERN:
{
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == 0) {
Val = 0xDEAD;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed pattern
*/
for (i = 0L; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
}
/*
* Check every word within the Words
* of tested memory and compare it
* with the fixed pattern
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 5 */
/* this break is for the prior fall through case statements */
break;
default:
{
return XST_MEMTEST_FAILED;
}
} /* end of switch */
/* Successfully passed memory test ! */
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Performs a destructive 8-bit wide memory test.
*
* @param Addr is a pointer to the region of memory to be tested.
* @param Words is the length of the block.
* @param Pattern is the constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest is the test selected. See xutil.h for possible values.
*
* @return
*
* - XST_MEMTEST_FAILED is returned for a failure
* - XST_SUCCESS is returned for a pass
*
* @note
*
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** width,
* the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a
* boundry of a power of two making it more difficult to detect addressing
* errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same
* problem. Ideally, if large blocks of memory are to be tested, break
* them up into smaller regions of memory to allow the test patterns used
* not to repeat over the region tested.
*
*****************************************************************************/
int XUtil_MemoryTest8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest)
{
u32 i;
u32 j;
u8 Val = XUT_MEMTEST_INIT_VALUE;
u8 FirstVal = XUT_MEMTEST_INIT_VALUE;
u8 Word;
XASSERT_NONVOID(Words != 0);
XASSERT_NONVOID(Subtest <= XUT_MAXTEST);
/*
* select the proper Subtest(s)
*/
switch (Subtest) {
case XUT_ALLMEMTESTS:
/* this case executes all of the Subtests */
/* fall through case statement */
case XUT_INCREMENT:
{
/*
* Fill the memory with incrementing
* values starting from 'FirstVal'
*/
for (i = 0L; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = FirstVal;
/*
* Check every word within the Words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val++;
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 1 */
/* fall through case statement */
case XUT_WALKONES:
{
/*
* set up to cycle through all possible initial
* test Patterns for walking ones test
*/
for (j = 0L; j < 8; j++) {
/*
* Generate an initial value for walking ones test to test
* for bad data bits
*/
Val = 1 << j;
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (i = 0L; i < 8; i++) {
/* write memory location */
Addr[i] = Val;
Val = (u8) RotateLeft(Val, 8);
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = 1 << j;
/* Read the values from each location that was written */
for (i = 0L; i < 8; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val = (u8) RotateLeft(Val, 8);
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 2 */
/* fall through case statement */
case XUT_WALKZEROS:
{
/*
* set up to cycle through all possible initial test
* Patterns for walking zeros test
*/
for (j = 0L; j < 8; j++) {
/*
* Generate an initial value for walking ones test to test
* for bad data bits
*/
Val = ~(1 << j);
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (i = 0L; i < 8; i++) {
/* write memory location */
Addr[i] = Val;
Val = ~((u8) RotateLeft(~Val, 8));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = ~(1 << j);
/* Read the values from each location that was written */
for (i = 0L; i < 8; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
Val = ~((u8) RotateLeft(~Val, 8));
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 3 */
/* fall through case statement */
case XUT_INVERSEADDR:
{
/* Fill the memory with inverse of address */
for (i = 0L; i < Words; i++) {
/* write memory location */
Val = (u8) (~((u32) (&Addr[i])));
Addr[i] = Val;
}
/*
* Check every word within the Words
* of tested memory
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
Val = (u8) (~((u32) (&Addr[i])));
if ((Word ^ Val) != 0x00) {
return XST_MEMTEST_FAILED;
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 4 */
/* fall through case statement */
case XUT_FIXEDPATTERN:
{
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == 0) {
Val = 0xA5;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed pattern
*/
for (i = 0L; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
}
/*
* Check every word within the Words
* of tested memory and compare it
* with the fixed pattern
*/
for (i = 0L; i < Words; i++) {
/* read memory location */
Word = Addr[i];
if (Word != Val) {
return XST_MEMTEST_FAILED;
}
}
if (Subtest != XUT_ALLMEMTESTS) {
return XST_SUCCESS;
}
} /* end of case 5 */
/* this break is for the prior fall through case statements */
break;
default:
{
return XST_MEMTEST_FAILED;
}
} /* end of switch */
/* Successfully passed memory test ! */
return XST_SUCCESS;
}
/*****************************************************************************/
/**
*
* Rotates the provided value to the left one bit position
*
* @param Input is value to be rotated to the left
* @param Width is the number of bits in the input data
*
* @return
*
* The resulting unsigned long value of the rotate left
*
* @note
*
* None.
*
*****************************************************************************/
static u32 RotateLeft(u32 Input, u8 Width)
{
u32 Msb;
u32 ReturnVal;
u32 WidthMask;
u32 MsbMask;
/*
* set up the WidthMask and the MsbMask
*/
MsbMask = 1 << (Width - 1);
WidthMask = (MsbMask << 1) - 1;
/*
* set the width of the Input to the correct width
*/
Input = Input & WidthMask;
Msb = Input & MsbMask;
ReturnVal = Input << 1;
if (Msb != 0x00000000) {
ReturnVal = ReturnVal | 0x00000001;
}
ReturnVal = ReturnVal & WidthMask;
return (ReturnVal);
}
#ifdef ROTATE_RIGHT
/*****************************************************************************/
/**
*
* Rotates the provided value to the right one bit position
*
* @param Input is value to be rotated to the right
* @param Width is the number of bits in the input data
*
* @return
*
* The resulting u32 value of the rotate right
*
* @note
*
* None.
*
*****************************************************************************/
static u32 RotateRight(u32 Input, u8 Width)
{
u32 Lsb;
u32 ReturnVal;
u32 WidthMask;
u32 MsbMask;
/*
* set up the WidthMask and the MsbMask
*/
MsbMask = 1 << (Width - 1);
WidthMask = (MsbMask << 1) - 1;
/*
* set the width of the Input to the correct width
*/
Input = Input & WidthMask;
ReturnVal = Input >> 1;
Lsb = Input & 0x00000001;
if (Lsb != 0x00000000) {
ReturnVal = ReturnVal | MsbMask;
}
ReturnVal = ReturnVal & WidthMask;
return (ReturnVal);
}
#endif /* ROTATE_RIGHT */