metalsvm/arch/x86/include/asm/processor.h
2012-07-22 13:16:17 +02:00

425 lines
9.7 KiB
C

/*
* Copyright 2010 Stefan Lankes, Chair for Operating Systems,
* RWTH Aachen University
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of MetalSVM.
*/
/**
* @author Stefan Lankes
* @file arch/x86/include/asm/processor.h
* @brief CPU-specific functions
*
* This file contains structures and functions related to CPU-specific assembler commands.
*/
#ifndef __ARCH_PROCESSOR_H__
#define __ARCH_PROCESSOR_H__
#include <metalsvm/stddef.h>
#include <asm/gdt.h>
#include <asm/apic.h>
#ifdef CONFIG_PCI
#include <asm/pci.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
// feature list 1
#define CPU_FEATURE_FPU (1 << 0)
#define CPU_FEATURE_MSR (1 << 5)
#define CPU_FEATURE_APIC (1 << 9)
#define CPU_FEATURE_MMX (1 << 23)
#define CPU_FEATURE_FXSR (1 << 24)
#define CPU_FEATURE_SSE (1 << 25)
#define CPU_FEATURE_SSE2 (1 << 26)
// feature list 2
#define CPU_FEATURE_X2APIC (1 << 21)
#define CPU_FEATURE_AVX (1 << 28)
#define CPU_FEATURE_HYPERVISOR (1 << 31)
typedef struct {
uint32_t feature1, feature2;
} cpu_info_t;
extern cpu_info_t cpu_info;
// determine the cpu features
int cpu_detection(void);
inline static uint32_t has_fpu(void)
{
return (cpu_info.feature1 & CPU_FEATURE_FPU);
}
inline static uint32_t has_msr(void)
{
return (cpu_info.feature1 & CPU_FEATURE_MSR);
}
inline static uint32_t has_apic(void)
{
return (cpu_info.feature1 & CPU_FEATURE_APIC);
}
inline static uint32_t has_fxsr(void)
{
return (cpu_info.feature1 & CPU_FEATURE_FXSR);
}
inline static uint32_t has_sse(void)
{
return (cpu_info.feature1 & CPU_FEATURE_SSE);
}
inline static uint32_t has_sse2(void)
{
return (cpu_info.feature1 & CPU_FEATURE_SSE2);
}
inline static uint32_t has_x2apic(void)
{
return (cpu_info.feature2 & CPU_FEATURE_X2APIC);
}
inline static uint32_t has_avx(void)
{
return (cpu_info.feature2 & CPU_FEATURE_AVX);
}
inline static uint32_t on_hypervisor(void)
{
return (cpu_info.feature2 & CPU_FEATURE_HYPERVISOR);
}
/** @brief Read out time stamp counter
*
* The rdtsc asm command puts a 64 bit time stamp value
* into EDX:EAX.
*
* @return The 64 bit time stamp value
*/
inline static uint64_t rdtsc(void)
{
uint64_t x;
asm volatile ("rdtsc" : "=A" (x));
return x;
}
/** @brief Flush cache
*
* The wbinvd asm instruction which stands for "Write back and invalidate"
* is used here
*/
inline static void flush_cache(void) {
asm volatile ("wbinvd" ::: "memory");
}
/** @brief Invalidate cache
*
* The invd asm instruction which invalidates cache without writing back
* is used here
*/
inline static void invalidate_cache(void) {
asm volatile ("invd" ::: "memory");
}
/** @brief Get return value from EAX
*
* If there is some return value in eax, this is the C-way to get it into a var
* if the function did not return it the normal way.
*
* @return The return value which wasn't returned as usual.
*/
inline static int get_return_value(void) {
int ret;
asm volatile ("movl %%eax, %0" : "=r"(ret));
return ret;
}
/* Force strict CPU ordering */
typedef void (*func_memory_barrier)(void);
extern func_memory_barrier mb;
extern func_memory_barrier rmb;
extern func_memory_barrier wmb;
/** @brief Read out CPU ID
*
* The cpuid asm-instruction does fill some information into registers and
* this function fills those register values into the given uint32_t vars.\n
* \n
* Some people are used to flush the pipeline with this instruction;
* There is another function for doing this in MetalSVM called flush_pipeline().
* It basically does the same. Just use it if you only want to flush the pipeline
* as it will be more comfortable because it does not take any parameters.
*
* @param code Input parameter for the cpuid instruction. Take a look into the intel manual.
* @param a EAX value will be stores here
* @param b EBX value will be stores here
* @param c ECX value will be stores here
* @param d EDX value will be stores here
*/
inline static void cpuid(uint32_t code, uint32_t* a, uint32_t* b, uint32_t* c, uint32_t* d) {
asm volatile ("cpuid" : "=a"(*a), "=b"(*b), "=c"(*c), "=d"(*d) : "0"(code), "2"(*c));
}
/** @brief Read MSR
*
* The asm instruction rdmsr which stands for "Read from model specific register"
* is used here.
*
* @param msr The parameter which rdmsr assumes in ECX
* @return The value rdmsr put into EDX:EAX
*/
inline static uint64_t rdmsr(uint32_t msr) {
uint32_t low, high;
asm volatile ("rdmsr" : "=a" (low), "=d" (high) : "c" (msr));
return ((uint64_t)high << 32) | low;
}
/** @brief Write a value to a Machine-Specific Registers (MSR)
*
* The asm instruction wrmsr which stands for "Write to model specific register"
* is used here.
*
* @param msr The MSR identifier
* @param value Value, which will be store in the MSR
*/
inline static void wrmsr(uint32_t msr, uint64_t value)
{
uint32_t low = value & 0xFFFFFFFF;
uint32_t high = value >> 32;
asm volatile("wrmsr" :: "a"(low), "c"(msr), "d"(high));
}
/** @brief Read cr0 register
* @return cr0's value
*/
static inline size_t read_cr0(void) {
size_t val;
asm volatile("mov %%cr0, %0" : "=r"(val));
return val;
}
/** @brief Write a value into cr0 register
* @param val The value you want to write into cr0
*/
static inline void write_cr0(size_t val) {
asm volatile("mov %0, %%cr0" : : "r"(val));
}
/** @brief Read cr2 register
* @return cr2's value
*/
static inline size_t read_cr2(void) {
size_t val;
asm volatile("mov %%cr2, %0" : "=r"(val));
return val;
}
/** @brief Read cr3 register
* @return cr3's value
*/
static inline size_t read_cr3(void) {
size_t val;
asm volatile("mov %%cr3, %0" : "=r"(val));
return val;
}
/** @brief Write a value into cr3 register
* @param val The value you want to write into cr3
*/
static inline void write_cr3(size_t val) {
asm volatile("mov %0, %%cr3" : : "r"(val));
}
/** @brief Read cr4 register
* @return cr4's value
*/
static inline size_t read_cr4(void) {
size_t val;
asm volatile("mov %%cr4, %0" : "=r"(val));
return val;
}
/** @brief Write a value into cr4 register
* @param val The value you want to write into cr4
*/
static inline void write_cr4(size_t val) {
asm volatile("mov %0, %%cr4" : : "r"(val));
}
int ipi_tlb_flush(void);
/** @brief Flush a specific page entry in TLB
* @param addr The (virtual) address of the page to flush
*/
static inline void tlb_flush_one_page(uint32_t addr)
{
asm volatile("invlpg (%0)" : : "r"(addr) : "memory");
#if MAX_CORES > 1
/*
* Currently, we didn't support user-level threads.
* => User-level applications run only on one
* and we didn't flush the TLB of the other cores
*/
if (addr <= KERNEL_SPACE)
ipi_tlb_flush();
#endif
}
/** @brief Invalidate the whole TLB
*
* Just reads cr3 and writes the same value back into it.
*/
static inline void tlb_flush(void)
{
uint32_t val = read_cr3();
if (val)
write_cr3(val);
#if MAX_CORES > 1
ipi_tlb_flush();
#endif
}
/** @brief Read EFLAGS
*
* @return The EFLAGS value
*/
static inline uint32_t read_eflags(void)
{
uint32_t result;
asm volatile ("pushf; pop %0" : "=r"(result));
return result;
}
/** @brief search the first most significant bit
*
* @param i source operand
* @return
* - first bit, which is set in the source operand
* - invalid value, if not bit ist set
*/
static inline size_t msb(size_t i)
{
size_t ret;
if (!i)
return (sizeof(size_t)*8);
asm volatile ("bsr %1, %0" : "=r"(ret) : "r"(i) : "cc");
return ret;
}
/** @brief search the least significant bit
*
* @param i source operand
* @return
* - first bit, which is set in the source operand
* - invalid value, if not bit ist set
*/
static inline size_t lsb(size_t i)
{
size_t ret;
if (!i)
return (sizeof(size_t)*8);
asm volatile ("bsf %1, %0" : "=r"(ret) : "r"(i) : "cc");
return ret;
}
/// A one-instruction-do-nothing
#define NOP1 asm volatile ("nop")
/// Do nothing for 2 instructions
#define NOP2 asm volatile ("nop;nop")
/// Do nothing for 4 instructions
#define NOP4 asm volatile ("nop;nop;nop;nop")
/// Do nothing for 8 instructions
#define NOP8 asm volatile ("nop;nop;nop;nop;nop;nop;nop;nop")
#ifndef CONFIG_TICKLESS
#define HALT asm volatile ("hlt")
#else
#define HALT asm volatile ("nop;nop;nop;nop;nop;nop;nop;nop")
#endif
/** @brief Init several subsystems
*
* This function calls the initialization procedures for:
* - GDT
* - APIC
* - PCI [if configured]
*
* @return 0 in any case
*/
inline static int system_init(void)
{
gdt_install();
cpu_detection();
apic_init();
#ifdef CONFIG_PCI
pci_init();
#endif
return 0;
}
/** @brief Detect and read out CPU frequency
*
* @return The CPU frequency in MHz
*/
uint32_t detect_cpu_frequency(void);
/** @brief Read out CPU frequency if detected before
*
* If you did not issue the detect_cpu_frequency() function before,
* this function will call it implicitly.
*
* @return The CPU frequency in MHz
*/
uint32_t get_cpu_frequency(void);
/** @brief Busywait an microseconds interval of time
* @param usecs The time to wait in microseconds
*/
void udelay(uint32_t usecs);
/** @brief System calibration
*
* This procedure will detect the CPU frequency and calibrate the APIC timer.
*
* @return 0 in any case.
*/
inline static int system_calibration(void)
{
detect_cpu_frequency();
apic_calibration();
return 0;
}
#ifdef __cplusplus
}
#endif
#endif