1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-09 00:00:00 +01:00
VILLASnode/lib/hooks/pmu_dft.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

697 lines
23 KiB
C++
Raw Permalink Normal View History

/* DFT hook.
*
* Author: Manuel Pitz <manuel.pitz@eonerc.rwth-aachen.de>
2022-03-15 09:28:57 -04:00
* SPDX-FileCopyrightText: 2014-2023 Institute for Automation of Complex Power Systems, RWTH Aachen University
2022-07-04 18:20:03 +02:00
* SPDX-License-Identifier: Apache-2.0
*/
#include <complex>
#include <cstring>
#include <vector>
#include <villas/timing.hpp>
2021-02-16 12:49:15 +01:00
2021-02-10 14:54:38 +01:00
#include <villas/dumper.hpp>
#include <villas/hook.hpp>
#include <villas/sample.hpp>
2021-06-29 12:40:59 -04:00
// Uncomment to enable dumper of memory windows
2021-06-29 15:39:31 +02:00
//#define DFT_MEM_DUMP
2021-06-25 15:38:18 +02:00
namespace villas {
namespace node {
class PmuDftHook : public MultiSignalHook {
protected:
enum class PaddingType { ZERO, SIG_REPEAT };
enum class WindowType { NONE, FLATTOP, HANN, HAMMING };
enum class EstimationType { NONE, QUADRATIC, IpDFT };
enum class TimeAlign {
LEFT,
CENTER,
RIGHT,
};
struct Point {
double x;
std::complex<double> y;
};
struct DftEstimate {
double amplitude;
double frequency;
double phase;
};
struct Phasor {
double frequency;
double amplitude;
double phase;
double rocof; // Rate of change of frequency.
};
enum WindowType windowType;
enum PaddingType paddingType;
enum EstimationType estType;
enum TimeAlign timeAlignType;
std::vector<std::vector<double>> smpMemoryData;
std::vector<timespec> smpMemoryTs;
2021-06-29 12:40:59 -04:00
#ifdef DFT_MEM_DUMP
std::vector<double> ppsMemory;
2021-06-29 12:40:59 -04:00
#endif
std::vector<std::vector<std::complex<double>>> matrix;
std::vector<std::vector<std::complex<double>>> results;
std::vector<double> filterWindowCoefficents;
std::vector<std::vector<double>> absResults;
std::vector<double> absFrequencies;
uint64_t calcCount;
unsigned sampleRate;
double startFrequency;
double endFreqency;
double frequencyResolution;
unsigned rate;
unsigned ppsIndex;
unsigned windowSize;
unsigned
windowMultiplier; // Multiplyer for the window to achieve frequency resolution
unsigned freqCount; // Number of requency bins that are calculated
bool
channelNameEnable; // Rename the output values with channel name or only descriptive name
uint64_t smpMemPos;
uint64_t lastSequence;
std::complex<double> omega;
double windowCorrectionFactor;
struct timespec lastCalc;
double nextCalc;
std::vector<Phasor> lastResult;
std::string dumperPrefix;
bool dumperEnable;
2021-06-29 12:40:59 -04:00
#ifdef DFT_MEM_DUMP
Dumper origSigSync;
Dumper windowdSigSync;
Dumper ppsSigSync;
Dumper phasorRocof;
Dumper phasorPhase;
Dumper phasorAmplitude;
Dumper phasorFreq;
#endif
2021-06-29 12:40:59 -04:00
double angleUnitFactor;
double phaseOffset;
double frequencyOffset;
double amplitudeOffset;
double rocofOffset;
public:
PmuDftHook(Path *p, Node *n, int fl, int prio, bool en = true)
: MultiSignalHook(p, n, fl, prio, en), windowType(WindowType::NONE),
paddingType(PaddingType::ZERO), estType(EstimationType::NONE),
timeAlignType(TimeAlign::CENTER), smpMemoryData(), smpMemoryTs(),
2021-06-29 12:40:59 -04:00
#ifdef DFT_MEM_DUMP
ppsMemory(),
2021-06-29 12:40:59 -04:00
#endif
matrix(), results(), filterWindowCoefficents(), absResults(),
absFrequencies(), calcCount(0), sampleRate(0), startFrequency(0),
endFreqency(0), frequencyResolution(0), rate(0), ppsIndex(0),
windowSize(0), windowMultiplier(0), freqCount(0), channelNameEnable(1),
smpMemPos(0), lastSequence(0), windowCorrectionFactor(0),
lastCalc({0, 0}), nextCalc(0.0), lastResult(),
dumperPrefix("/tmp/plot/"), dumperEnable(false),
#ifdef DFT_MEM_DUMP
origSigSync(dumperPrefix + "origSigSync"),
windowdSigSync(dumperPrefix + "windowdSigSync"),
ppsSigSync(dumperPrefix + "ppsSigSync"),
phasorRocof(dumperPrefix + "phasorRocof"),
phasorPhase(dumperPrefix + "phasorPhase"),
phasorAmplitude(dumperPrefix + "phasorAmplitude"),
phasorFreq(dumperPrefix + "phasorFreq"),
#endif
angleUnitFactor(1), phaseOffset(0.0), frequencyOffset(0.0),
amplitudeOffset(0.0), rocofOffset(0.0) {
}
virtual void prepare() {
MultiSignalHook::prepare();
dumperEnable = logger->level() <= SPDLOG_LEVEL_DEBUG;
signals->clear();
for (unsigned i = 0; i < signalIndices.size(); i++) {
// Add signals
auto freqSig =
std::make_shared<Signal>("frequency", "Hz", SignalType::FLOAT);
auto amplSig =
std::make_shared<Signal>("amplitude", "V", SignalType::FLOAT);
auto phaseSig = std::make_shared<Signal>(
"phase", (angleUnitFactor) ? "rad" : "deg",
SignalType::FLOAT); //angleUnitFactor==1 means rad
auto rocofSig =
std::make_shared<Signal>("rocof", "Hz/s", SignalType::FLOAT);
if (!freqSig || !amplSig || !phaseSig || !rocofSig)
throw RuntimeError("Failed to create new signals");
if (channelNameEnable) {
auto suffix = fmt::format("_{}", signalNames[i]);
freqSig->name += suffix;
amplSig->name += suffix;
phaseSig->name += suffix;
rocofSig->name += suffix;
}
signals->push_back(freqSig);
signals->push_back(amplSig);
signals->push_back(phaseSig);
signals->push_back(rocofSig);
}
// Initialize sample memory
smpMemoryData.clear();
for (unsigned i = 0; i < signalIndices.size(); i++) {
smpMemoryData.emplace_back(windowSize, 0.0);
}
smpMemoryTs.clear();
for (unsigned i = 0; i < windowSize; i++) {
smpMemoryTs.push_back({0});
}
lastResult.clear();
for (unsigned i = 0; i < windowSize; i++) {
lastResult.push_back({0, 0, 0, 0});
}
2022-07-04 18:20:03 +02:00
#ifdef DFT_MEM_DUMP
// Initialize temporary ppsMemory
ppsMemory.clear();
ppsMemory.resize(windowSize, 0.0);
#endif
// Calculate how much zero padding ist needed for a needed resolution
windowMultiplier =
ceil(((double)sampleRate / windowSize) / frequencyResolution);
if (windowMultiplier > 1 && estType == EstimationType::IpDFT)
throw RuntimeError("Window multiplyer must be 1 if lpdft is used. Change "
"resolution, window_size_factor or frequency range! "
"Current window multiplyer factor is {}",
windowMultiplier);
freqCount = ceil((endFreqency - startFrequency) / frequencyResolution) + 1;
// Initialize matrix of dft coeffients
matrix.clear();
for (unsigned i = 0; i < freqCount; i++)
matrix.emplace_back(windowSize * windowMultiplier, 0.0);
// Initalize dft results matrix
results.clear();
for (unsigned i = 0; i < signalIndices.size(); i++) {
results.emplace_back(freqCount, 0.0);
absResults.emplace_back(freqCount, 0.0);
}
filterWindowCoefficents.resize(windowSize);
for (unsigned i = 0; i < freqCount; i++)
absFrequencies.emplace_back(startFrequency + i * frequencyResolution);
generateDftMatrix();
calculateWindow(windowType);
state = State::PREPARED;
}
virtual void parse(json_t *json) {
MultiSignalHook::parse(json);
int ret;
int windowSizeFactor = 1;
const char *paddingTypeC = nullptr;
const char *windowTypeC = nullptr;
const char *estimateTypeC = nullptr;
const char *angleUnitC = nullptr;
const char *timeAlignC = nullptr;
json_error_t err;
assert(state != State::STARTED);
Hook::parse(json);
ret = json_unpack_ex(
json, &err, 0,
"{ s?: i, s?: F, s?: F, s?: F, s?: i, s?: i, s?: s, s?: s, s?: s, s?: "
"i, s?: s, s?: b, s?: s, s?: F, s?: F, s?: F, s?: F}",
"sample_rate", &sampleRate, "start_freqency", &startFrequency,
"end_freqency", &endFreqency, "frequency_resolution",
&frequencyResolution, "dft_rate", &rate, "window_size_factor",
&windowSizeFactor, "window_type", &windowTypeC, "padding_type",
&paddingTypeC, "estimate_type", &estimateTypeC, "pps_index", &ppsIndex,
"angle_unit", &angleUnitC, "add_channel_name", &channelNameEnable,
"timestamp_align", &timeAlignC, "phase_offset", &phaseOffset,
"amplitude_offset", &amplitudeOffset, "frequency_offset",
&frequencyOffset, "rocof_offset", &rocofOffset);
if (ret)
throw ConfigError(json, err, "node-config-hook-dft");
windowSize = sampleRate * windowSizeFactor / (double)rate;
logger->info(
"Set windows size to {} samples which fits {} times the rate {}s",
windowSize, windowSizeFactor, 1.0 / rate);
if (!windowTypeC)
logger->info("No Window type given, assume no windowing");
else if (strcmp(windowTypeC, "flattop") == 0)
windowType = WindowType::FLATTOP;
else if (strcmp(windowTypeC, "hamming") == 0)
windowType = WindowType::HAMMING;
else if (strcmp(windowTypeC, "hann") == 0)
windowType = WindowType::HANN;
else
throw ConfigError(json, "node-config-hook-dft-window-type",
"Invalid window type: {}", windowTypeC);
if (!timeAlignC)
logger->info("No timestamp alignment defined. Assume alignment center");
else if (strcmp(timeAlignC, "left") == 0)
timeAlignType = TimeAlign::LEFT;
else if (strcmp(timeAlignC, "center") == 0)
timeAlignType = TimeAlign::CENTER;
else if (strcmp(timeAlignC, "right") == 0)
timeAlignType = TimeAlign::RIGHT;
else
throw ConfigError(json, "node-config-hook-dft-timestamp-alignment",
"Timestamp alignment {} not recognized", timeAlignC);
if (!angleUnitC)
logger->info("No angle type given, assume rad");
else if (strcmp(angleUnitC, "rad") == 0)
angleUnitFactor = 1;
else if (strcmp(angleUnitC, "degree") == 0)
angleUnitFactor = 180 / M_PI;
else
throw ConfigError(json, "node-config-hook-dft-angle-unit",
"Angle unit {} not recognized", angleUnitC);
if (!paddingTypeC)
logger->info("No Padding type given, assume no zeropadding");
else if (strcmp(paddingTypeC, "zero") == 0)
paddingType = PaddingType::ZERO;
else if (strcmp(paddingTypeC, "signal_repeat") == 0)
paddingType = PaddingType::SIG_REPEAT;
else
throw ConfigError(json, "node-config-hook-dft-padding-type",
"Padding type {} not recognized", paddingTypeC);
if (!estimateTypeC) {
logger->info("No Frequency estimation type given, assume no none");
estType = EstimationType::NONE;
} else if (strcmp(estimateTypeC, "quadratic") == 0)
estType = EstimationType::QUADRATIC;
else if (strcmp(estimateTypeC, "ipdft") == 0)
estType = EstimationType::IpDFT;
state = State::PARSED;
}
virtual void check() {
assert(state == State::PARSED);
if (endFreqency < 0 || endFreqency > sampleRate)
throw RuntimeError("End frequency must be smaller than sampleRate {}",
sampleRate);
if (frequencyResolution > (double)sampleRate / windowSize)
throw RuntimeError("The maximum frequency resolution with smaple_rate:{} "
"and window_site:{} is {}",
sampleRate, windowSize,
((double)sampleRate / windowSize));
state = State::CHECKED;
}
virtual Hook::Reason process(struct Sample *smp) {
assert(state == State::STARTED);
// Update sample memory
unsigned i = 0;
for (auto index : signalIndices) {
smpMemoryData[i++][smpMemPos % windowSize] = smp->data[index].f;
}
smpMemoryTs[smpMemPos % windowSize] = smp->ts.origin;
2021-02-16 10:19:04 +01:00
2021-06-29 12:40:59 -04:00
#ifdef DFT_MEM_DUMP
ppsMemory[smpMemPos % windowSize] = smp->data[ppsIndex].f;
2021-06-29 12:40:59 -04:00
#endif
bool run = false;
double smpNsec = smp->ts.origin.tv_sec * 1e9 + smp->ts.origin.tv_nsec;
2021-06-25 15:38:18 +02:00
if (smpNsec > nextCalc) {
run = true;
nextCalc =
(smp->ts.origin.tv_sec + (((calcCount % rate) + 1) / (double)rate)) *
1e9;
}
2021-02-10 13:06:19 +01:00
if (run) {
lastCalc = smp->ts.origin;
2021-06-29 12:40:59 -04:00
#ifdef DFT_MEM_DUMP
double tmpPPSWindow[windowSize];
2021-06-23 20:36:39 +02:00
for (unsigned i = 0; i < windowSize; i++)
tmpPPSWindow[i] = ppsMemory[(i + smpMemPos) % windowSize];
2021-06-29 12:40:59 -04:00
if (dumperEnable)
ppsSigSync.writeDataBinary(windowSize, tmpPPSWindow);
2021-06-29 12:40:59 -04:00
#endif
#pragma omp parallel for
for (unsigned i = 0; i < signalIndices.size(); i++) {
Phasor currentResult = {0, 0, 0, 0};
calculateDft(PaddingType::ZERO, smpMemoryData[i], results[i],
smpMemPos);
unsigned maxPos = 0;
double absAmplitude = 0;
for (unsigned j = 0; j < freqCount; j++) {
if (absAmplitude < abs(results[i][j])) {
absAmplitude = abs(results[i][j]);
maxPos = j;
}
}
int multiplier =
paddingType == PaddingType::ZERO ? 1 : windowMultiplier;
DftEstimate dftEstimate = {0};
if ((maxPos < 1 || maxPos >= freqCount - 1) &&
estType != EstimationType::NONE) {
logger->warn("Maximum frequency bin lies on window boundary. Using "
"non-estimated results!");
dftEstimate = noEstimation(
{0}, {absFrequencies[maxPos + 0], results[i][maxPos + 0]}, {0},
maxPos, startFrequency, frequencyResolution, multiplier,
windowSize, windowCorrectionFactor);
} else {
Point a = {absFrequencies[maxPos - 1], results[i][maxPos - 1]};
Point b = {absFrequencies[maxPos + 0], results[i][maxPos + 0]};
Point c = {absFrequencies[maxPos + 1], results[i][maxPos + 1]};
if (estType == EstimationType::QUADRATIC)
dftEstimate = quadraticEstimation(
a, b, c, maxPos, startFrequency, frequencyResolution,
multiplier, windowSize, windowCorrectionFactor);
else if (estType == EstimationType::IpDFT)
dftEstimate = lpdftEstimation(a, b, c, maxPos, startFrequency,
frequencyResolution, multiplier,
windowSize, windowCorrectionFactor);
else
dftEstimate = noEstimation({0}, b, {0}, maxPos, startFrequency,
frequencyResolution, multiplier,
windowSize, windowCorrectionFactor);
}
currentResult.frequency = dftEstimate.frequency;
currentResult.amplitude = dftEstimate.amplitude;
currentResult.phase =
dftEstimate.phase * angleUnitFactor; //convert phase from rad to deg
if (windowSize <= smpMemPos) {
smp->data[i * 4 + 0].f =
currentResult.frequency + frequencyOffset; // Frequency
smp->data[i * 4 + 1].f = (currentResult.amplitude / pow(2, 0.5)) +
amplitudeOffset; // Amplitude
smp->data[i * 4 + 2].f = currentResult.phase + phaseOffset; // Phase
smp->data[i * 4 + 3].f =
((currentResult.frequency - lastResult[i].frequency) *
(double)rate) +
rocofOffset; /* ROCOF */
;
lastResult[i] = currentResult;
}
}
#ifdef DFT_MEM_DUMP
// The following is a debug output and currently only for channel 0
if (dumperEnable && windowSize * 5 < smpMemPos) {
phasorFreq.writeDataBinary(1, &(smp->data[0 * 4 + 0].f));
phasorPhase.writeDataBinary(1, &(smp->data[0 * 4 + 2].f));
phasorAmplitude.writeDataBinary(1, &(smp->data[0 * 4 + 1].f));
phasorRocof.writeDataBinary(1, &(smp->data[0 * 4 + 3].f));
}
#endif
smp->length = windowSize < smpMemPos ? signalIndices.size() * 4 : 0;
if (smpMemPos >= windowSize) {
unsigned tsPos = 0;
if (timeAlignType == TimeAlign::RIGHT)
tsPos = smpMemPos;
else if (timeAlignType == TimeAlign::LEFT)
tsPos = smpMemPos - windowSize;
else if (timeAlignType == TimeAlign::CENTER) {
tsPos = smpMemPos - (windowSize / 2);
}
2022-03-31 15:54:07 +00:00
smp->ts.origin = smpMemoryTs[tsPos % windowSize];
}
2022-03-31 15:54:07 +00:00
calcCount++;
}
2021-02-10 13:06:19 +01:00
if (smp->sequence - lastSequence > 1)
logger->warn("Calculation is not Realtime. {} sampled missed",
smp->sequence - lastSequence);
lastSequence = smp->sequence;
if (smpMemPos >=
2 * windowSize) { //reset smpMemPos if greater than twice the window. Important to handle init
smpMemPos = windowSize;
}
2022-03-31 15:54:07 +00:00
smpMemPos++;
if (run && windowSize < smpMemPos)
return Reason::OK;
return Reason::SKIP_SAMPLE;
}
/*
* This function generates the furie coeffients for the calculateDft function
*/
void generateDftMatrix() {
using namespace std::complex_literals;
omega = exp((-2i * M_PI) / (double)(windowSize * windowMultiplier));
unsigned startBin = floor(startFrequency / frequencyResolution);
for (unsigned i = 0; i < freqCount; i++) {
for (unsigned j = 0; j < windowSize * windowMultiplier; j++)
matrix[i][j] = pow(omega, (i + startBin) * j);
}
}
/*
* This function calculates the discrete furie transform of the input signal
*/
void calculateDft(enum PaddingType padding, std::vector<double> &ringBuffer,
std::vector<std::complex<double>> &results,
unsigned ringBufferPos) {
/* RingBuffer size needs to be equal to windowSize
* prepare sample window The following parts can be combined */
double tmpSmpWindow[windowSize];
for (unsigned i = 0; i < windowSize; i++)
tmpSmpWindow[i] = ringBuffer[(i + ringBufferPos) % windowSize] *
filterWindowCoefficents[i];
2021-06-23 20:18:12 +02:00
#ifdef DFT_MEM_DUMP
if (dumperEnable)
origSigSync.writeDataBinary(windowSize, tmpSmpWindow);
2021-06-23 20:18:12 +02:00
#endif
for (unsigned i = 0; i < freqCount; i++) {
results[i] = 0;
for (unsigned j = 0; j < windowSize * windowMultiplier; j++) {
if (padding == PaddingType::ZERO) {
if (j < windowSize)
results[i] += tmpSmpWindow[j] * matrix[i][j];
else
results[i] += 0;
} else if (padding == PaddingType::SIG_REPEAT) // Repeat samples
results[i] += tmpSmpWindow[j % windowSize] * matrix[i][j];
}
}
}
/*
* This function prepares the selected window coefficents
*/
void calculateWindow(enum WindowType windowTypeIn) {
switch (windowTypeIn) {
case WindowType::FLATTOP:
for (unsigned i = 0; i < windowSize; i++) {
filterWindowCoefficents[i] =
0.21557895 - 0.41663158 * cos(2 * M_PI * i / (windowSize)) +
0.277263158 * cos(4 * M_PI * i / (windowSize)) -
0.083578947 * cos(6 * M_PI * i / (windowSize)) +
0.006947368 * cos(8 * M_PI * i / (windowSize));
windowCorrectionFactor += filterWindowCoefficents[i];
}
break;
case WindowType::HAMMING:
case WindowType::HANN: {
double a0 = 0.5; // This is the hann window
if (windowTypeIn == WindowType::HAMMING)
a0 = 25. / 46;
for (unsigned i = 0; i < windowSize; i++) {
filterWindowCoefficents[i] =
a0 - (1 - a0) * cos(2 * M_PI * i / (windowSize));
windowCorrectionFactor += filterWindowCoefficents[i];
}
break;
}
default:
for (unsigned i = 0; i < windowSize; i++) {
filterWindowCoefficents[i] = 1;
windowCorrectionFactor += filterWindowCoefficents[i];
}
break;
}
windowCorrectionFactor /= windowSize;
}
DftEstimate noEstimation(const Point &a, const Point &b, const Point &c,
unsigned maxFBin, double startFrequency,
double frequencyResolution, double multiplier,
double windowSize, double windowCorrectionFactor) {
// Frequency estimation
double f_est = startFrequency + maxFBin * frequencyResolution;
// Amplitude estimation
double a_est =
abs(b.y) * 2 / (windowSize * windowCorrectionFactor * multiplier);
//Phase estimation
double phase_est = atan2(b.y.imag(), b.y.real());
return {a_est, f_est, phase_est};
}
/*
* This function is calculation the IpDFT based on the following paper:
*
* https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7980868&tag=1
*
*/
DftEstimate lpdftEstimation(const Point &a, const Point &b, const Point &c,
unsigned maxFBin, double startFrequency,
double frequencyResolution, double multiplier,
double windowSize,
double windowCorrectionFactor) {
double delta = 0;
//paper eq 8
if (abs(c.y) > abs(a.y)) {
delta = 1. * (2. * abs(c.y) - abs(b.y)) / (abs(b.y) + abs(c.y));
} else {
delta = -1. * (2. * abs(a.y) - abs(b.y)) / (abs(b.y) + abs(a.y));
}
// Frequency estimation (eq 4)
double f_est =
startFrequency + ((double)maxFBin + delta) * frequencyResolution;
// Amplitude estimation (eq 9)
double a_est = abs(b.y) * abs((M_PI * delta) / sin(M_PI * delta)) *
abs(pow(delta, 2) - 1);
a_est *= 2 / (windowSize * windowCorrectionFactor * multiplier);
//Phase estimation (eq 10)
double phase_est = atan2(b.y.imag(), b.y.real()) - M_PI * delta;
return {a_est, f_est, phase_est};
}
/*
* This function is calculating the mximum based on a quadratic interpolation
*
* This function is based on the following paper:
* https://mgasior.web.cern.ch/pap/biw2004.pdf (equation 10) (freq estimation)
* https://dspguru.com/dsp/howtos/how-to-interpolate-fft-peak/
*/
DftEstimate quadraticEstimation(const Point &a, const Point &b,
const Point &c, unsigned maxFBin,
double startFrequency,
double frequencyResolution, double multiplier,
double windowSize,
double windowCorrectionFactor) {
using namespace std::complex_literals;
double ay_abs =
abs(a.y) * 2 / (windowSize * windowCorrectionFactor * multiplier);
double by_abs =
abs(b.y) * 2 / (windowSize * windowCorrectionFactor * multiplier);
double cy_abs =
abs(c.y) * 2 / (windowSize * windowCorrectionFactor * multiplier);
// Frequency estimation
double maxBinEst = (double)maxFBin +
(cy_abs - ay_abs) / (2 * (2 * by_abs - ay_abs - cy_abs));
double f_est = startFrequency +
maxBinEst * frequencyResolution; // convert bin to frequency
// Amplitude estimation
double f = (a.x * (by_abs - cy_abs) + b.x * (cy_abs - ay_abs) +
c.x * (ay_abs - by_abs)) /
((a.x - b.x) * (a.x - c.x) * (c.x - b.x));
double g =
(pow(a.x, 2) * (by_abs - cy_abs) + pow(b.x, 2) * (cy_abs - ay_abs) +
pow(c.x, 2) * (ay_abs - by_abs)) /
((a.x - b.x) * (a.x - c.x) * (b.x - c.x));
double h = (pow(a.x, 2) * (b.x * cy_abs - c.x * by_abs) +
a.x * (pow(c.x, 2) * by_abs - pow(b.x, 2) * cy_abs) +
b.x * c.x * ay_abs * (b.x - c.x)) /
((a.x - b.x) * (a.x - c.x) * (b.x - c.x));
double a_est = f * pow(f_est, 2) + g * f_est + h;
//Phase estimation
double phase_est = atan2(b.y.imag(), b.y.real());
return {a_est, f_est, phase_est};
}
};
// Register hook
2021-09-13 11:41:13 +02:00
static char n[] = "pmu_dft";
static char d[] = "This hook calculates the dft on a window";
static HookPlugin<PmuDftHook, n, d,
(int)Hook::Flags::NODE_READ | (int)Hook::Flags::NODE_WRITE |
(int)Hook::Flags::PATH>
p;
} // namespace node
} // namespace villas