1
0
Fork 0
mirror of https://git.rwth-aachen.de/acs/public/villas/node/ synced 2025-03-23 00:00:01 +01:00
VILLASnode/fpga/lib/gpu/gpu.cpp
Daniel Krebs 8a06e96e92 gpu: always allocate page-sized chunks, then use LinearAllocator
This was neccessary in order to make the memory available via GDRcopy
when multiple small allocations were made. cudaMalloc() would return
multiple memory chunks located in the same GPU page, which GDRcopy
pretty much dislikes (`gdrdrv:offset != 0 is not supported`).
As a side effect, this will keep the number of BAR-mappings done
via GDRcopy low, because they seem to be quite limited.
2018-07-20 16:46:55 +02:00

505 lines
14 KiB
C++

#include <cstdio>
#include <cstdint>
#include <sys/mman.h>
#include <memory>
#include <algorithm>
#include <villas/gpu.hpp>
#include <villas/log.hpp>
#include <villas/kernel/pci.h>
#include <memory_manager.hpp>
#include <cuda.h>
#include <cuda_runtime.h>
#include <gdrapi.h>
#include "kernels.hpp"
namespace villas {
namespace gpu {
static GpuFactory gpuFactory;
GpuAllocator::GpuAllocator(Gpu& gpu) :
BaseAllocator(gpu.masterPciEAddrSpaceId),
gpu(gpu)
{
free = [&](MemoryBlock* mem) {
cudaSetDevice(gpu.gpuId);
if(cudaFree(reinterpret_cast<void*>(mem->getOffset())) != cudaSuccess) {
logger->warn("cudaFree() failed for {:#x} of size {:#x}",
mem->getOffset(), mem->getSize());
}
removeMemoryBlock(*mem);
};
}
std::string
villas::gpu::GpuAllocator::getName() const
{
std::stringstream name;
name << "GpuAlloc" << getAddrSpaceId();
return name.str();
}
GpuFactory::GpuFactory() :
Plugin(Plugin::Type::Gpu, "GPU")
{
logger = loggerGetOrCreate("GpuFactory");
}
// required to be defined here for PIMPL to compile
Gpu::~Gpu()
{
auto& mm = MemoryManager::get();
mm.removeAddressSpace(masterPciEAddrSpaceId);
}
// we use PIMPL in order to hide gdrcopy types from the public header
class Gpu::impl {
public:
gdr_t gdr;
struct pci_device pdev;
};
std::string Gpu::getName() const
{
cudaDeviceProp deviceProp;
if(cudaGetDeviceProperties(&deviceProp, gpuId) != cudaSuccess) {
// logger not yet availabe
loggerGetOrCreate("Gpu")->error("Cannot retrieve properties for GPU {}", gpuId);
throw std::exception();
}
std::stringstream name;
name << "gpu" << gpuId << "(" << deviceProp.name << ")";
return name.str();
}
bool Gpu::registerIoMemory(const MemoryBlock& mem)
{
auto& mm = MemoryManager::get();
const auto pciAddrSpaceId = mm.getPciAddressSpace();
// Check if we need to map anything at all, maybe it's already reachable
try {
// TODO: there might already be a path through the graph, but there's no
// overlapping window, so this will fail badly!
auto translation = mm.getTranslation(masterPciEAddrSpaceId,
mem.getAddrSpaceId());
if(translation.getSize() >= mem.getSize()) {
// there is already a sufficient path
logger->debug("Already mapped through another mapping");
return true;
} else {
logger->warn("There's already a mapping, but too small");
}
} catch(const std::out_of_range&) {
// not yet reachable, that's okay, proceed
}
// In order to register IO memory with CUDA, it has to be mapped to the VA
// space of the current process (requirement of CUDA API). Check this now.
MemoryManager::AddressSpaceId mappedBaseAddrSpaceId;
try {
auto path = mm.findPath(mm.getProcessAddressSpace(), mem.getAddrSpaceId());
// first node in path is the mapped memory space whose virtual address
// we need to hand to CUDA
mappedBaseAddrSpaceId = path.front();
} catch (const std::out_of_range&) {
logger->error("Memory not reachable from process, but required by CUDA");
return false;
}
// determine the base address of the mapped memory region needed by CUDA
const auto translationProcess = mm.getTranslationFromProcess(mappedBaseAddrSpaceId);
const uintptr_t baseAddrForProcess = translationProcess.getLocalAddr(0);
// Now check that the memory is also reachable via PCIe bus, otherwise GPU
// has no means to access it.
uintptr_t baseAddrOnPci;
size_t sizeOnPci;
try {
auto translationPci = mm.getTranslation(pciAddrSpaceId,
mappedBaseAddrSpaceId);
baseAddrOnPci = translationPci.getLocalAddr(0);
sizeOnPci = translationPci.getSize();
} catch(const std::out_of_range&) {
logger->error("Memory is not reachable via PCIe bus");
return false;
}
if(sizeOnPci < mem.getSize()) {
logger->warn("VA mapping of IO memory is too small: {:#x} instead of {:#x} bytes",
sizeOnPci, mem.getSize());
logger->warn("If something later on fails or behaves strangely, this might be the cause!");
}
cudaSetDevice(gpuId);
auto baseAddrVA = reinterpret_cast<void*>(baseAddrForProcess);
if(cudaHostRegister(baseAddrVA, sizeOnPci, cudaHostRegisterIoMemory) != cudaSuccess) {
logger->error("Cannot register IO memory for block {}", mem.getAddrSpaceId());
return false;
}
void* devicePointer = nullptr;
if(cudaHostGetDevicePointer(&devicePointer, baseAddrVA, 0) != cudaSuccess) {
logger->error("Cannot retrieve device pointer for IO memory");
return false;
}
mm.createMapping(reinterpret_cast<uintptr_t>(devicePointer), baseAddrOnPci,
sizeOnPci, "CudaIoMem", masterPciEAddrSpaceId, pciAddrSpaceId);
return true;
}
bool
Gpu::registerHostMemory(const MemoryBlock& mem)
{
auto& mm = MemoryManager::get();
auto translation = mm.getTranslationFromProcess(mem.getAddrSpaceId());
auto localBase = reinterpret_cast<void*>(translation.getLocalAddr(0));
int ret = cudaHostRegister(localBase, mem.getSize(), 0);
if(ret != cudaSuccess) {
logger->error("Cannot register memory block {} addr={:p} size={:#x} to CUDA: ret={}",
mem.getAddrSpaceId(), localBase, mem.getSize(), ret);
return false;
}
void* devicePointer = nullptr;
ret = cudaHostGetDevicePointer(&devicePointer, localBase, 0);
if(ret != cudaSuccess) {
logger->error("Cannot retrieve device pointer for IO memory: ret={}", ret);
return false;
}
mm.createMapping(reinterpret_cast<uintptr_t>(devicePointer), 0, mem.getSize(),
"CudaHostMem", masterPciEAddrSpaceId, mem.getAddrSpaceId());
return true;
}
bool Gpu::makeAccessibleToPCIeAndVA(const MemoryBlock& mem)
{
if(pImpl->gdr == nullptr) {
logger->warn("GDRcopy not available");
return false;
}
auto& mm = MemoryManager::get();
try {
auto path = mm.findPath(masterPciEAddrSpaceId, mem.getAddrSpaceId());
// if first hop is the PCIe bus, we know that memory is off-GPU
if(path.front() == mm.getPciAddressSpace()) {
throw std::out_of_range("Memory block is outside of this GPU");
}
} catch (const std::out_of_range&) {
logger->error("Trying to map non-GPU memory block");
return false;
}
logger->debug("retrieve complete device pointer from point of view of GPU");
// retrieve complete device pointer from point of view of GPU
auto translation = mm.getTranslation(masterPciEAddrSpaceId,
mem.getAddrSpaceId());
CUdeviceptr devptr = translation.getLocalAddr(0);
int ret;
// required to set this flag before mapping
unsigned int enable = 1;
ret = cuPointerSetAttribute(&enable, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, devptr);
if(ret != CUDA_SUCCESS) {
logger->error("Cannot set pointer attributes on memory block {}: {}",
mem.getAddrSpaceId(), ret);
return false;
}
gdr_mh_t mh;
ret = gdr_pin_buffer(pImpl->gdr, devptr, mem.getSize(), 0, 0, &mh);
if(ret != 0) {
logger->error("Cannot pin memory block {} via gdrcopy: {}",
mem.getAddrSpaceId(), ret);
return false;
}
void* bar = nullptr;
ret = gdr_map(pImpl->gdr, mh, &bar, mem.getSize());
if(ret != 0) {
logger->error("Cannot map memory block {} via gdrcopy: {}",
mem.getAddrSpaceId(), ret);
return false;
}
gdr_info_t info;
ret = gdr_get_info(pImpl->gdr, mh, &info);
if(ret != 0) {
logger->error("Cannot get info for mapping of memory block {}: {}",
mem.getAddrSpaceId(), ret);
return false;
}
const uintptr_t offset = info.va - devptr;
const uintptr_t userPtr = reinterpret_cast<uintptr_t>(bar) + offset;
logger->debug("BAR ptr: {:p}", bar);
logger->debug("info.va: {:#x}", info.va);
logger->debug("info.mapped_size: {:#x}", info.mapped_size);
logger->debug("info.page_size: {:#x}", info.page_size);
logger->debug("offset: {:#x}", offset);
logger->debug("user pointer: {:#x}", userPtr);
// mapping to acceses memory block from process
mm.createMapping(userPtr, 0, info.mapped_size, "GDRcopy",
mm.getProcessAddressSpace(), mem.getAddrSpaceId());
// retrieve bus address
uint64_t addr[8];
ret = gdr_map_dma(pImpl->gdr, mh, 3, 0, 0, addr, 8);
for(int i = 0; i < ret; i++) {
logger->debug("DMA addr[{}]: {:#x}", i, addr[i]);
}
if(ret != 1) {
logger->error("Only one DMA address per block supported at the moment");
return false;
}
// mapping to access memory block from peer devices via PCIe
mm.createMapping(addr[0], 0, mem.getSize(), "GDRcopyDMA",
mm.getPciAddressSpace(), mem.getAddrSpaceId());
return true;
}
bool
Gpu::makeAccessibleFromPCIeOrHostRam(const MemoryBlock& mem)
{
// Check which kind of memory this is and where it resides
// There are two possibilities:
// - Host memory not managed by CUDA
// - IO memory somewhere on the PCIe bus
auto& mm = MemoryManager::get();
bool isIoMemory = false;
try {
auto path = mm.findPath(mm.getPciAddressSpace(), mem.getAddrSpaceId());
isIoMemory = true;
} catch(const std::out_of_range&) {
// not reachable via PCI -> not IO memory
}
if(isIoMemory) {
logger->debug("Memory block {} is assumed to be IO memory",
mem.getAddrSpaceId());
return registerIoMemory(mem);
} else {
logger->debug("Memory block {} is assumed to be non-CUDA host memory",
mem.getAddrSpaceId());
return registerHostMemory(mem);
}
}
void Gpu::memcpySync(const MemoryBlock& src, const MemoryBlock& dst, size_t size)
{
auto& mm = MemoryManager::get();
auto src_translation = mm.getTranslation(masterPciEAddrSpaceId,
src.getAddrSpaceId());
const void* src_buf = reinterpret_cast<void*>(src_translation.getLocalAddr(0));
auto dst_translation = mm.getTranslation(masterPciEAddrSpaceId,
dst.getAddrSpaceId());
void* dst_buf = reinterpret_cast<void*>(dst_translation.getLocalAddr(0));
cudaSetDevice(gpuId);
cudaMemcpy(dst_buf, src_buf, size, cudaMemcpyDefault);
}
void Gpu::memcpyKernel(const MemoryBlock& src, const MemoryBlock& dst, size_t size)
{
auto& mm = MemoryManager::get();
auto src_translation = mm.getTranslation(masterPciEAddrSpaceId,
src.getAddrSpaceId());
auto src_buf = reinterpret_cast<uint8_t*>(src_translation.getLocalAddr(0));
auto dst_translation = mm.getTranslation(masterPciEAddrSpaceId,
dst.getAddrSpaceId());
auto dst_buf = reinterpret_cast<uint8_t*>(dst_translation.getLocalAddr(0));
cudaSetDevice(gpuId);
kernel_memcpy<<<1, 1>>>(dst_buf, src_buf, size);
cudaDeviceSynchronize();
}
MemoryTranslation
Gpu::translate(const MemoryBlock& dst)
{
auto& mm = MemoryManager::get();
return mm.getTranslation(masterPciEAddrSpaceId, dst.getAddrSpaceId());
}
std::unique_ptr<villas::MemoryBlock, villas::MemoryBlock::deallocator_fn>
GpuAllocator::allocateBlock(size_t size)
{
cudaSetDevice(gpu.gpuId);
void* addr;
auto& mm = MemoryManager::get();
// search for an existing chunk that has enough free memory
auto chunk = std::find_if(chunks.begin(), chunks.end(), [&](const auto& chunk) {
return chunk->getAvailableMemory() >= size;
});
if(chunk != chunks.end()) {
logger->debug("Found existing chunk that can host the requested block");
return (*chunk)->allocateBlock(size);
} else {
// allocate a new chunk
// rounded-up multiple of GPU page size
const size_t chunkSize = size - (size & (GpuPageSize - 1)) + GpuPageSize;
logger->debug("Allocate new chunk of {:#x} bytes", chunkSize);
if(cudaSuccess != cudaMalloc(&addr, chunkSize)) {
logger->error("cudaMalloc(..., size={}) failed", chunkSize);
throw std::bad_alloc();
}
// assemble name for this block
std::stringstream name;
name << std::showbase << std::hex << reinterpret_cast<uintptr_t>(addr);
auto blockName = mm.getSlaveAddrSpaceName(getName(), name.str());
auto blockAddrSpaceId = mm.getOrCreateAddressSpace(blockName);
const auto localAddr = reinterpret_cast<uintptr_t>(addr);
std::unique_ptr<MemoryBlock, MemoryBlock::deallocator_fn>
mem(new MemoryBlock(localAddr, chunkSize, blockAddrSpaceId), this->free);
insertMemoryBlock(*mem);
// already make accessible to CPU
gpu.makeAccessibleToPCIeAndVA(*mem);
// create a new allocator to manage the chunk and push to chunk list
chunks.push_front(std::make_unique<LinearAllocator>(std::move(mem)));
// call again, this time there's a large enough chunk
return allocateBlock(size);
}
}
Gpu::Gpu(int gpuId) :
pImpl{std::make_unique<impl>()},
gpuId(gpuId)
{
logger = loggerGetOrCreate(getName());
pImpl->gdr = gdr_open();
if(pImpl->gdr == nullptr) {
logger->warn("No GDRcopy support enabled, cannot open /dev/gdrdrv");
}
}
bool Gpu::init()
{
auto& mm = MemoryManager::get();
const auto gpuPciEAddrSpaceName = mm.getMasterAddrSpaceName(getName(), "PCIe");
masterPciEAddrSpaceId = mm.getOrCreateAddressSpace(gpuPciEAddrSpaceName);
allocator = std::make_unique<GpuAllocator>(*this);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, gpuId);
pImpl->pdev.slot = {
deviceProp.pciDomainID,
deviceProp.pciBusID,
deviceProp.pciDeviceID,
0};
struct pci_region* pci_regions = nullptr;
const size_t pci_num_regions = pci_get_regions(&pImpl->pdev, &pci_regions);
for(size_t i = 0; i < pci_num_regions; i++) {
const size_t region_size = pci_regions[i].end - pci_regions[i].start + 1;
logger->info("BAR{}: bus addr={:#x} size={:#x}",
pci_regions[i].num, pci_regions[i].start, region_size);
char name[] = "BARx";
name[3] = '0' + pci_regions[i].num;
auto gpuBarXAddrSpaceName = mm.getSlaveAddrSpaceName(getName(), name);
auto gpuBarXAddrSpaceId = mm.getOrCreateAddressSpace(gpuBarXAddrSpaceName);
mm.createMapping(pci_regions[i].start, 0, region_size,
std::string("PCI-") + name,
mm.getPciAddressSpace(), gpuBarXAddrSpaceId);
}
free(pci_regions);
return true;
}
std::list<std::unique_ptr<Gpu>>
GpuFactory::make()
{
int deviceCount = 0;
cudaGetDeviceCount(&deviceCount);
std::list<std::unique_ptr<Gpu>> gpuList;
for(int gpuId = 0; gpuId < deviceCount; gpuId++) {
if(cudaSetDevice(gpuId) != cudaSuccess) {
logger->warn("Cannot activate GPU {}", gpuId);
continue;
}
auto gpu = std::make_unique<Gpu>(gpuId);
if(not gpu->init()) {
logger->warn("Cannot initialize GPU {}", gpuId);
continue;
}
gpuList.emplace_back(std::move(gpu));
}
logger->info("Initialized {} GPUs", gpuList.size());
for(auto& gpu : gpuList) {
logger->debug(" - {}", gpu->getName());
}
return gpuList;
}
} // namespace villas
} // namespace gpu